Logical Methods for Self-Configuration of Network Devices

Author(s):  
Sylvain Hallé ◽  
Roger Villemaire ◽  
Omar Cherkaoui

The goal of self-configuration consists of providing appropriate values for parameters that modulate the behaviour of a device. In this chapter, self-configuration is studied from a mathematical logic point of view. In contrast with imperative means of generating configurations, characterized by scripts and templates, the use of declarative languages such as propositional or first-order logic is argued. In that setting, device configurations become models of particular logical formulæ, which can be generated using constraint solvers without any rigid scripting or user intervention.

2001 ◽  
Vol 7 (4) ◽  
pp. 441-484 ◽  
Author(s):  
José Ferreirós

AbstractThis paper aims to outline an analysis and interpretation of the process that led to First-Order Logic and its consolidation as a core system of modern logic. We begin with an historical overview of landmarks along the road to modern logic, and proceed to a philosophical discussion casting doubt on the possibility of a purely rational justification of the actual delimitation of First-Order Logic. On this basis, we advance the thesis that a certain historical tradition was essential to the emergence of modern logic; this traditional context is analyzed as consisting in some guiding principles and, particularly, a set of exemplars (i.e., paradigmatic instances). Then, we proceed to interpret the historical course of development reviewed in section 1, which can broadly be described as a two-phased movement of expansion and then restriction of the scope of logical theory. We shall try to pinpoint ambivalencies in the process, and the main motives for subsequent changes. Among the latter, one may emphasize the spirit of modern axiomatics, the situation of foundational insecurity in the 1920s, the resulting desire to find systems well-behaved from a proof-theoretical point of view, and the metatheoretical results of the 1930s. Not surprisingly, the mathematical and, more specifically, the foundational context in which First-Order Logic matured will be seen to have played a primary role in its shaping.Mathematical logic is what logic, through twenty-five centuries and a few transformations, has become today. (Jean van Heijenoort)


Author(s):  
Bernd Buldt

An infinitary logic arises from ordinary first-order logic when one or more of its finitary properties is allowed to become infinite, for example, by admitting infinitely long formulas or infinitely long or infinitely branched proof figures. The need to extend first-order logic became pressing in the late 1950s when it was realized that many of the fundamental notions of mathematics cannot be expressed in first-order logic in a way that would allow for their logical analysis. Because infinitary logics often do not suffer the same limitation, they have become an essential tool in mathematical logic.


2005 ◽  
Vol 70 (3) ◽  
pp. 696-712 ◽  
Author(s):  
Johan Van Benthem

AbstractMinimal predicates P satisfying a given first-order description ϕ(P) occur widely in mathematical logic and computer science. We give an explicit first-order syntax for special first-order ‘PIA conditions’ ϕ(P) which guarantees unique existence of such minimal predicates. Our main technical result is a preservation theorem showing PIA-conditions to be expressively complete for all those first-order formulas that are preserved under a natural model-theoretic operation of ‘predicate intersection’. Next, we show how iterated predicate minimization on PIA-conditions yields a language MIN(FO) equal in expressive power to LFP(FO), first-order logic closed under smallest fixed-points for monotone operations. As a concrete illustration of these notions, we show how our sort of predicate minimization extends the usual frame correspondence theory of modal logic, leading to a proper hierarchy of modal axioms: first-order-definable, first-order fixed-point definable, and beyond.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Zoran Majkić

We considered an extension of the first-order logic (FOL) by Bealer's intensional abstraction operator. Contemporary use of the term “intension” derives from the traditional logical Frege-Russell doctrine that an idea (logic formula) has both an extension and an intension. Although there is divergence in formulation, it is accepted that the “extension” of an idea consists of the subjects to which the idea applies, and the “intension” consists of the attributes implied by the idea. From the Montague's point of view, the meaning of an idea can be considered as particular extensions in different possible worlds. In the case of standard FOL, we obtain a commutative homomorphic diagram, which is valid in each given possible world of an intensional FOL: from a free algebra of the FOL syntax, into its intensional algebra of concepts, and, successively, into an extensional relational algebra (different from Cylindric algebras). Then we show that this composition corresponds to the Tarski's interpretation of the standard extensional FOL in this possible world.


2019 ◽  
pp. 1-38
Author(s):  
MARCELO E. CONIGLIO ◽  
G.T. GOMEZ-PEREIRA ◽  
MARTÍN FIGALLO

Abstract The 3-valued paraconsistent logic Ciore was developed by Carnielli, Marcos and de Amo under the name LFI2, in the study of inconsistent databases from the point of view of logics of formal inconsistency (LFIs). They also considered a first-order version of Ciore called LFI2*. The logic Ciore enjoys extreme features concerning propagation and retropropagation of the consistency operator: a formula is consistent if and only if some of its subformulas is consistent. In addition, Ciore is algebraizable in the sense of Blok and Pigozzi. On the other hand, the logic LFI2* satisfies a somewhat counter-intuitive property: the universal and the existential quantifier are inter-definable by means of the paraconsistent negation, as it happens in classical first-order logic with respect to the classical negation. This feature seems to be unnatural, given that both quantifiers have the classical meaning in LFI2*, and that this logic does not satisfy the De Morgan laws with respect to its paraconsistent negation. The first goal of the present article is to introduce a first-order version of Ciore (which we call QCiore) preserving the spirit of Ciore, that is, without introducing unexpected relationships between the quantifiers. The second goal of the article is to adapt to QCiore the partial structures semantics for the first-order paraconsistent logic LPT1 introduced by Coniglio and Silvestrini, which generalizes the semantic notion of quasi-truth considered by Mikeberg, da Costa and Chuaqui. Finally, some important results of classical Model Theory are obtained for this logic, such as Robinson’s joint consistency theorem, amalgamation and interpolation. Although we focus on QCiore, this framework can be adapted to other 3-valued first-order LFIs.


1996 ◽  
Vol 6 (6) ◽  
pp. 505-526 ◽  
Author(s):  
Detlef Seese

It is well known that every algorithmic problem definable by a formula of first-order logic can be solved in polynomial time, since all these problems are inL(see Aho and Ullman (1979) and Immerman (1987)). Using an old technique of Hanf (Hanf 1965) and other techniques developed to prove the decidability of formal theories in mathematical logic, it is shown that an arbitraryFO-problem over relational structures of bounded degree can be solved in linear time.


2010 ◽  
Vol 75 (4) ◽  
pp. 1359-1365 ◽  
Author(s):  
Julien Melleray

AbstractWe reformulate, in the context of continuous logic, an oscillation theorem proved by G. Hjorth and give a proof of the theorem in that setting which is similar to, but simpler than, Hjorth's original one. The point of view presented here clarifies the relation between Hjorth's theorem and first-order logic.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Sign in / Sign up

Export Citation Format

Share Document