Fuzzy Logic Based Modeling in the Complex System Fault Diagnosis

Author(s):  
Miroslav Pokorný ◽  
Pavel Fojtík

This chapter deals with the model-based fault diagnosis approaches that exploit the fuzzy modeling approximation abilities to obtain the appropriate model of the monitored system. This technique makes use of the Takagi-Sugeno fuzzy model to describe the non-linear dynamic system by its decomposition onto number of linear submodels, so that it is possible to overcome difficulties in conventional methods for dealing with nonlinearity. A linear residual generator formed by Kalman filters which are designed for the each of the linear subsystem is then proposed to generate diagnostic signals - residuals. Since the task is formulated on a statistical basis, the generalized likelihood ratio test is chosen as a decision-making algorithm. Finally, two practical examples are presented to demonstrate the applicability of the proposed approach.

Author(s):  
N. Selvaganesan

This chapter presents the design methodology of fuzzy based modeling, control, and fault diagnosis of Permanent Magnet Synchronous Generator (PMSG) system. The fuzzy based modeling scheme for PMSG is developed using the general Takagi-Sugeno fuzzy model. Subsequently, fuzzy controller is designed and simulated to maintain three phase output voltage as constant by controlling the speed of generator. The feasibility of the fuzzy model and control scheme is demonstrated using various operating conditions by MATLAB simulation. Also, fuzzy based fault detection scheme for PMSG is developed and presented. The positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. The fuzzy inference system is created, and rule base is evaluated, relating the sequence current component to the type of faults. The feasibility of this scheme is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Chun-Yen Ho ◽  
Hsien-Keng Chen ◽  
Zheng-Ming Ge

This paper investigates the synchronization ofYinandYangchaotic T-S fuzzy Henon maps via PDC controllers. Based on the Chinese philosophy,Yinis the decreasing, negative, historical, or feminine principle in nature, whileYangis the increasing, positive, contemporary, or masculine principle in nature.YinandYangare two fundamental opposites in Chinese philosophy. The Henon map is an invertible map; so the Henon maps with increasing and decreasing argument can be called theYangandYinHenon maps, respectively. Chaos synchronization ofYinandYangT-S fuzzy Henon maps is achieved by PDC controllers. The design of PDC controllers is based on the linear invertible matrix theory. The T-S fuzzy model ofYinandYangHenon maps and the design of PDC controllers are novel, and the simulation results show that the approach is effective.


Sign in / Sign up

Export Citation Format

Share Document