Operation of Microgrid and Control Strategies

2022 ◽  
pp. 111-126
Author(s):  
Suma Deepthi Veeraganti ◽  
Ramchandra Nittala

Microgrids are the most innovative area in the electric power industry today. A microgrid can operate in grid-connected or islanded mode. In islanded mode, microgrids can provide electricity to the rural areas with lower cost and minimum power losses. Several methods have been proposed in the literature for the successful operation of a microgrid. This chapter presents an overview of the major challenges and their possible solutions for planning, operation, and control of islanded operation of a microgrid. Microgrids are the most innovative area in the electric power industry today. Moreover, microgrids provide local voltage and frequency regulation support and improve reliability and power capacity of the grid. The most popular among the control strategies based on droop characteristics, in addition a central controller is described within a hierarchical control scheme to optimize the operation of the microgrid during interconnected operation. Microgrid control methods, including PQ control, droop control, voltage/frequency control, and current control methods are formulated.

Author(s):  
Suma Deepthi Veeraganti ◽  
Ramchandra Nittala

Microgrids are the most innovative area in the electric power industry today. A microgrid can operate in grid-connected or islanded mode. In islanded mode, microgrids can provide electricity to the rural areas with lower cost and minimum power losses. Several methods have been proposed in the literature for the successful operation of a microgrid. This chapter presents an overview of the major challenges and their possible solutions for planning, operation, and control of islanded operation of a microgrid. Microgrids are the most innovative area in the electric power industry today. Moreover, microgrids provide local voltage and frequency regulation support and improve reliability and power capacity of the grid. The most popular among the control strategies based on droop characteristics, in addition a central controller is described within a hierarchical control scheme to optimize the operation of the microgrid during interconnected operation. Microgrid control methods, including PQ control, droop control, voltage/frequency control, and current control methods are formulated.


Author(s):  
Yuriy Konovalov ◽  
Vladislav Baranov ◽  
Roman Istratov

The tendency of modernization of electric drives in the electric power industry from unregulated to frequency regulation with automatic optimization of power consumption and the introduction of mechatronic drives is substantiated.


2020 ◽  
Vol 2021 (1) ◽  
pp. 47-55
Author(s):  
A Plakhtiev ◽  
◽  
Gayratjon Gaziev ◽  
Yahyojon Meliboev ◽  
Odil Doniyorov

In communication and communication devices, power equipment, relay protection and automation terminals, in the electric power industry of "smart" cities and homes, in industry, in railway transport, microprocessor-based relay protection and automation devices, distributed generation installations, including renewable energy sources, and electricity storage, as well as "intelligent" automated information and measurement systems are beginning to be used. Contactless converters of direct and alternating currents of control and control systems are widely used in them. Their disadvantages are a narrow range of controlled currents, large dimensions and weight. Therefore, it is important to eliminate them. The paper discusses the general principles of construction of contactless converters of large direct currents, the main requirements for them, and shows the results of the development of one of the options proposed by us, universal contactless magneto-modulation converters of large direct currents with an extended range for various control and control systems. They differ from the known ones by an extended controlled range with small dimensions and weight, and increased accuracy and sensitivity. The converter has a simple and technological design with low material consumption and cost, and can control large direct currents, as well as alternating currents, without contact. The paper considers the errors from external magnetic fields of universal contactless converters of control and control systems. It is shown that the error from the external magnetic field does not exceed 0.08% if the number of sections of the measuring winding is even and with their symmetrical arrangement, and with their even increase-the error decreases. At the same time, the developed contactless converters can be widely used in industry, metallurgy, railway transport, agriculture, water and farming, as well as in the electric power industry of “smart” cities and homes and for checking electric meters at the place of their installation.


Sign in / Sign up

Export Citation Format

Share Document