Strain Field Pattern Recognition for Structural Health Monitoring Applications

Author(s):  
Julián Sierra-Pérez ◽  
Joham Alvarez-Montoya

Strain field pattern recognition, also known as strain mapping, is a structural health monitoring approach based on strain measurements gathered through a network of sensors (i.e., strain gauges and fiber optic sensors such as FGBs or distributed sensing), data-driven modeling for feature extraction (i.e., PCA, nonlinear PCA, ANNs, etc.), and damage indices and thresholds for decision making (i.e., Q index, T2 scores, and so on). The aim is to study the correlations among strain readouts by means of machine learning techniques rooted in the artificial intelligence field in order to infer some change in the global behavior associated with a damage occurrence. Several case studies of real-world engineering structures both made of metallic and composite materials are presented including a wind turbine blade, a lattice spacecraft structure, a UAV wing section, a UAV aircraft under real flight operation, a concrete structure, and a soil profile prototype.

2018 ◽  
Author(s):  
Erick Giraldo-Pérez ◽  
Joham Alvarez-Montoya ◽  
Hader Vladimir Martínez Tejada ◽  
Julián Sierra-Pérez

2019 ◽  
Vol 9 (21) ◽  
pp. 4600 ◽  
Author(s):  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Christian Boller ◽  
Jens Prager

Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for engineering structures consisting of multiple layers.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
M. Sun ◽  
W. J. Staszewski ◽  
R. N. Swamy

Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced composites, possess very important capabilities of monitoring various physical or chemical parameters related to the health and therefore, durable service life of structures. In particular, piezoelectric sensors and magnetorestrictive sensors can serve as both sensors and actuators, which make SHM to be an active monitoring system. Thus, smart sensing technologies are now currently available, and can be utilized to the SHM of civil engineering structures. In this paper, the application of smart materials/sensors for the SHM of civil engineering structures is critically reviewed. The major focus is on the evaluations of laboratory and field studies of smart materials/sensors in civil engineering structures.


Sign in / Sign up

Export Citation Format

Share Document