Executing CNN-LSTM Algorithm for Recognizable Proof of Cervical Spondylosis Infection on Spinal Cord MRI Image

Author(s):  
Sasank V. V. S. ◽  
Kranthi Kumar Singamaneni ◽  
A. Sampath Dakshina Murthy ◽  
S. K. Hasane Ahammad

Various estimating mechanisms are present for evaluating the regional agony, neck torment, neurologic deficiencies of the sphincters at the stage midlevel of cervical spondylosis. It is necessary for the cervical spondylosis that the survey necessitates wide range of learning skills about the systemized life, experience, and ability of the expertise for learning the capability, life system, and experience. Doctors check the analysis of situation through MRI and CT scan, but additional interesting facts have been discovered in the physical test. For this, a programming approach is not available. The authors thereby propose a novel framework that accordingly inspects and investigates the cervical spondylosis employing computation of CNN-LSTM. Machine learning methods such as long short-term memory (LSTM) in fusion with convolution neural networks (CNNs), a kind of neural network (NN), are applied to this strategy to evaluate for making the systematization in various applications.

2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document