Genetic-Algorithm-Based Performance Optimization for Non-Linear MIMO System

Author(s):  
Anitha Mary Xavier

Environmental regulations demand efficient and eco-friendly ways of power generation. Coal continues to play a vital role in power generation because of its availability in abundance. Power generation using coal leads to local pollution problems. Hence this conflicting situation demands a new technology - Integrated Gasification Combined Cycle (IGCC). Gasifier is one of the subsystems in IGCC. It is a multivariable system with four inputs and four outputs with higher degree of cross coupling between the input and output variables. ALSTOM – a multinational and Original Equipment Manufacturer (OEM) - developed a detailed nonlinear mathematical model, validated made this model available to the academic community and demanded different control strategies which will satisfy certain stringent performance criteria during specified disturbances. These demands of ALSTOM are well known as “ALSTOM Benchmark Challenges”. The chapter is addressed to solve Alstom Benchmark Challenges using Proportional-Integral-Derivative-Filter (PIDF) controllers optimised by Genetic Algorithm.

Author(s):  
Anitha Mary Xavier

Environmental regulations demand efficient and eco-friendly ways of power generation. Coal continues to play a vital role in power generation because of its availability in abundance. Power generation using coal leads to local pollution problems. Hence this conflicting situation demands a new technology - Integrated Gasification Combined Cycle (IGCC). Gasifier is one of the subsystems in IGCC. It is a multivariable system with four inputs and four outputs with higher degree of cross coupling between the input and output variables. ALSTOM – a multinational and Original Equipment Manufacturer (OEM) - developed a detailed nonlinear mathematical model, validated made this model available to the academic community and demanded different control strategies which will satisfy certain stringent performance criteria during specified disturbances. These demands of ALSTOM are well known as “ALSTOM Benchmark Challenges”. The chapter is addressed to solve Alstom Benchmark Challenges using Proportional-Integral-Derivative-Filter (PIDF) controllers optimised by Genetic Algorithm.


2014 ◽  
Vol 8 (5) ◽  
pp. 186 ◽  
Author(s):  
Anitha Mary. X ◽  
L. Sivakumar ◽  
J. Jayakumar

In this work, a new technique based on Genetic Algorithm for designing multivariable PID filter controller has been developed and applied to gasifier control of ALSTOM benchmark challenge II. The coal gasifier is the main component in Modern power generation. Coal gasifier involves several performance and robustness requirements in addition to actuator constraints under three operating loads (no-load, 50% and 100% load). The proposed GA optimises the tuning parameters of PID constants in terms of robustness and performance. The optimised controller meets all design objectives under all operating conditions. Robustness of the controller is tested for step and sinusoidal pressure disturbances applied at the inlet of throttle valve along with increase and decrease of calorific value of fuel fed-in (coal). Simulation results obtained confirmed the superiority of proposed technique for gasifier problems. 


Author(s):  
Zhibin Yang ◽  
Ze Lei ◽  
Ben Ge ◽  
Xingyu Xiong ◽  
Yiqian Jin ◽  
...  

AbstractChanges are needed to improve the efficiency and lower the CO2 emissions of traditional coal-fired power generation, which is the main source of global CO2 emissions. The integrated gasification fuel cell (IGFC) process, which combines coal gasification and high-temperature fuel cells, was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO2 emissions. Supported by the National Key R&D Program of China, the IGFC for near-zero CO2 emissions program was enacted with the goal of achieving near-zero CO2 emissions based on (1) catalytic combustion of the flue gas from solid oxide fuel cell (SOFC) stacks and (2) CO2 conversion using solid oxide electrolysis cells (SOECs). In this work, we investigated a kW-level catalytic combustion burner and SOEC stack, evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO2 co-electrolysis, and established a multi-scale and multi-physical coupling simulation model of SOFCs and SOECs. The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.


2021 ◽  
Vol 14 (2) ◽  
pp. 900-905
Author(s):  
Shengyang Zhou ◽  
Zhen Qiu ◽  
Maria Strømme ◽  
Chao Xu

The new technology of “solar-driven ionic power generation” based on ionic thermophoresis and electrokinetic effects could convert solar energy into electricity by using a film of nanocellulose @ conductive metal–organic framework.


Sign in / Sign up

Export Citation Format

Share Document