Biochemistry Behind Protein Adaptations in Extremophiles

2022 ◽  
pp. 124-135
Author(s):  
Kailas V. Fuldeore ◽  
Nafisa Patel ◽  
Aradhana Hitesh bhai Bavarva ◽  
Vrushali Ashok Wagh

Extremophiles are the mortals that tolerate in the most limiting and aggravating conditions to life. Because of these fantastic ecological criticisms, extremophiles have substituted innumerable intriguing transformations to cell films, proteins, and extracellular metabolites. These stimulatingly regulated usual particles and frameworks as of now play parts in numerous biotechnological fields. Compounds from extremophilic microorganisms as a rule catalyse synthetic responses in non-standard conditions. Such conditions advance accumulation, precipitation, and denaturation, diminishing the movement of most non-extremophilic catalysts, regularly because of the shortfall of adequate hydration. Extremophilic catalysts can go after hydration by means of modifications particularly to their surface through more noteworthy surface charges and expanded sub-atomic movement. These assets have permitted few extremophilic compounds to work within the sight of non-fluid natural solvents, with potential for plan of valuable impetuses.

2013 ◽  
Vol 23 (2) ◽  
pp. 165-191
Author(s):  
Mohamed F. El-Sayed ◽  
M. H. M. Moussa ◽  
Ahmed A. A. Hassan ◽  
N. M. Hafez

2018 ◽  
Vol 24 (15) ◽  
pp. 1682-1688 ◽  
Author(s):  
Yu Jinsui ◽  
Situ Bing ◽  
Luo Muhua ◽  
Li Yue ◽  
Liao Jianyi ◽  
...  

Introduction: Although a great many strategies have been proposed for tumor-targeted chemotherapy, current delivery methods of anticancer drugs present limited success with inevitable systemic toxicity. The aim of this study was to develop a new kind of theranostic carrier for targeted tumor therapy. Methods: Prior to prepare CHC-PFP-DOX, carboxymethyl-hexanoyl chitosan (CHC) was synthesized by acylation of carboxymethyl chitosan. To develop CHC-PFP, perfluoropentane (PFP), an ultrasound gas precursor, was simultaneously encapsulated into the hydrophobic inner cores of pre-formulated CHC micelle in aqueous phase via using the oil in water (O/W) emulsion method. The size distribution and surface charges of these nanodroplets were measured and the morphology was observed by transmission electron microscopy (TEM). For ultrasound imaging application, in vitro model was established to evaluate the imaging of CHC-PFP-DOX under different concentration and mechanical index. After that, the anti-tumor effect of ultrasound combined with CHC-PFPDOX on ovarian cancer cells was investigated. Results: The resulting CHC-PFP-DOX had a nano-sized particle structure, with hydrophobic anticancer DOX/PFP inner cores and a hydrophilic carboxymethyl chitosan polymer outer shell. The favorable nano-scaled size offers the potential to extravagate from veins and accumulate in tumor tissues via enhanced permeation and retention (EPR) effect. Additionally, CHC-PFP-DOX showed the ability to serve as ultrasound imaging agent at body temperature. Notably, it exhibited an ultrasound-triggered drug release profile through the external ultrasound irradiation. Further study demonstrated that ultrasound combined with CHC-PFP-DOX can improve the killing effect of chemotherapy for tumor. Conclusion: CHC-PFP-DOX holds great promise in simultaneous cancer-targeting ultrasound imaging and ultrasound- mediated delivery for cancer chemotherapy.


2020 ◽  
Vol 10 (2) ◽  
pp. 166-174
Author(s):  
Mehdi Khoshneviszadeh ◽  
Sarah Zargarnezhad ◽  
Younes Ghasemi ◽  
Ahmad Gholami

Background: Magnetic cell immobilization has been introduced as a novel, facile and highly efficient approach for cell separation. A stable attachment between bacterial cell wall with superparamagnetic iron oxide nanoparticles (SPIONs) would enable the microorganisms to be affected by an outer magnetic field. At high concentrations, SPIONs produce reactive oxygen species in cytoplasm, which induce apoptosis or necrosis in microorganisms. Choosing a proper surface coating could cover the defects and increase the efficiency. Methods: In this study, asparagine, APTES, lipo-amino acid and PEG surface modified SPIONs was synthesized by co-precipitation method and characterized by FTIR, TEM, VSM, XRD, DLS techniques. Then, their protective effects against four Gram-positive and Gram-negative bacterial strains including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were examined through microdilution broth and compared to naked SPION. Results: The evaluation of characterization results showed that functionalization of magnetic nanoparticles could change their MS value, size and surface charges. Also, the microbial analysis revealed that lipo-amino acid coated magnetic nanoparticles has the least adverse effect on microbial strain among tested SPIONs. Conclusion: This study showed lipo-amino acid could be considered as the most protective and even promotive surface coating, which is explained by its optimizing effect on cell penetration and negligible reductive effects on magnetic properties of SPIONs. lipo-amino acid coated magnetic nanoparticles could be used in microbial biotechnology and industrial microbiology.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 542 ◽  
Author(s):  
Kenta Kobayashi ◽  
Mai Takashima ◽  
Mai Takase ◽  
Bunsho Ohtani

Facet-selective gold or platinum-nanoparticle deposition on decahedral-shaped anatase titania particles (DAPs) exposing {001} and {101} facets via photodeposition (PD) from metal-complex sources was reexamined using DAPs prepared with gas-phase reaction of titanium (IV) chloride and oxygen by quantitatively evaluating the area deposition density on {001} and {101} and comparing with the results of deposition from colloidal metal particles in the dark (CDD) or under photoirradiation (CDL). The observed facet selectivity, more or less {101} preferable, depended mainly on pH of the reaction suspensions and was almost non-selective at low pH regardless of the deposition method, PD or CDL, and the metal-source materials. Based on the results, the present authors propose that facet selectivity is attributable to surface charges (zeta potential) depending on the kind of facets, {001} and {101}, and pH of the reaction mixture and that this concept can explain the observed facet selectivity and possibly the reported facet selectivity without taking into account facet-selective reaction of photoexcited electrons and positive holes on {101} and {001} facets, respectively.


2014 ◽  
Vol 426 ◽  
pp. 31-38 ◽  
Author(s):  
Moritz Schollbach ◽  
Fajun Zhang ◽  
Felix Roosen-Runge ◽  
Maximilian W.A. Skoda ◽  
Robert M.J. Jacobs ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 507
Author(s):  
Luca Seravalli ◽  
Claudio Ferrari ◽  
Matteo Bosi

In this paper, we model the electrical properties of germanium nanowires with a particular focus on physical mechanisms of electrical molecular sensing. We use the Tibercad software to solve the drift-diffusion equations in 3D and we validate the model against experimental data, considering a p-doped nanowire with surface traps. We simulate three different types of interactions: (1) Passivation of surface traps; (2) Additional surface charges; (3) Charge transfer from molecules to nanowires. By analyzing simulated I–V characteristics, we observe that: (i) the largest change in current occurs with negative charges on the surfaces; (ii) charge transfer provides relevant current changes only for very high values of additional doping; (iii) for certain values of additional n-doping ambipolar currents could be obtained. The results of these simulations highlight the complexity of the molecular sensing mechanism in nanowires, that depends not only on the NW parameters but also on the properties of the molecules. We expect that these findings will be valuable to extend the knowledge of molecular sensing by germanium nanowires, a fundamental step to develop novel sensors based on these nanostructures.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Guilherme Volpe Bossa ◽  
Sylvio May

Poisson–Boltzmann theory provides an established framework to calculate properties and free energies of an electric double layer, especially for simple geometries and interfaces that carry continuous charge densities. At sufficiently small length scales, however, the discreteness of the surface charges cannot be neglected. We consider a planar dielectric interface that separates a salt-containing aqueous phase from a medium of low dielectric constant and carries discrete surface charges of fixed density. Within the linear Debye-Hückel limit of Poisson–Boltzmann theory, we calculate the surface potential inside a Wigner–Seitz cell that is produced by all surface charges outside the cell using a Fourier-Bessel series and a Hankel transformation. From the surface potential, we obtain the Debye-Hückel free energy of the electric double layer, which we compare with the corresponding expression in the continuum limit. Differences arise for sufficiently small charge densities, where we show that the dominating interaction is dipolar, arising from the dipoles formed by the surface charges and associated counterions. This interaction propagates through the medium of a low dielectric constant and alters the continuum power of two dependence of the free energy on the surface charge density to a power of 2.5 law.


Sign in / Sign up

Export Citation Format

Share Document