RDF Query Path Optimization Using Hybrid Genetic Algorithms

2022 ◽  
Vol 12 (1) ◽  
pp. 1-16
Author(s):  
Qazi Mudassar Ilyas ◽  
Muneer Ahmad ◽  
Sonia Rauf ◽  
Danish Irfan

Resource Description Framework (RDF) inherently supports data mergers from various resources into a single federated graph that can become very large even for an application of modest size. This results in severe performance degradation in the execution of RDF queries. As every RDF query essentially traverses a graph to find the output of the Query, an efficient path traversal reduces the execution time of RDF queries. Hence, query path optimization is required to reduce the execution time as well as the cost of a query. Query path optimization is an NP-hard problem that cannot be solved in polynomial time. Genetic algorithms have proven to be very useful in optimization problems. We propose a hybrid genetic algorithm for query path optimization. The proposed algorithm selects an initial population using iterative improvement thus reducing the initial solution space for the genetic algorithm. The proposed algorithm makes significant improvements in the overall performance. We show that the overall number of joins for complex queries is reduced considerably, resulting in reduced cost.

2012 ◽  
Vol 616-618 ◽  
pp. 2064-2067
Author(s):  
Yong Gang Che ◽  
Chun Yu Xiao ◽  
Chao Hai Kang ◽  
Ying Ying Li ◽  
Li Ying Gong

To solve the primary problems in genetic algorithms, such as slow convergence speed, poor local searching capability and easy prematurity, the immune mechanism is introduced into the genetic algorithm, and thus population diversity is maintained better, and the phenomena of premature convergence and oscillation are reduced. In order to compensate the defects of immune genetic algorithm, the Hénon chaotic map, which is introduced on the above basis, makes the generated initial population uniformly distributed in the solution space, eventually, the defect of data redundancy is reduced and the quality of evolution is improved. The proposed chaotic immune genetic algorithm is used to optimize the complex functions, and there is an analysis compared with the genetic algorithm and the immune genetic algorithm, the feasibility and effectiveness of the proposed algorithm are proved from the perspective of simulation experiments.


Author(s):  
А.А. Тайлакова ◽  
А.Г. Пимонов

В статье представлена оптимизационная модель для расчета конструкций нежестких дорожных одежд, обосновано применение эволюционных алгоритмов в сочетании с полным перебором и параллельными вычислениями и описан разработанный гибридный генетический алгоритм The article presents an optimization model for calculating structures of non-rigid road surfaces, justifies the use of evolutionary algorithms in combination with full search and parallel calculations, and describes the developed hybrid genetic algorithm for optimizing the design of non-rigid road surfaces at the cost of materials of structural layers.


2020 ◽  
Vol 24 (3) ◽  
pp. 33-43
Author(s):  
A. P. Sergushicheva ◽  
E. N. Davydova

The purpose of the article is to present the results of a study on the development of a genetic algorithm to solve the problems of career guidance for graduates of secondary educational institutions and to verify the possibility of its implementation in a computer system. The issue of career guidance for graduates is still relevant, problematic and not fully resolved. According to the authors, the introduction of artificial intelligence technologies in career guidance systems is a promising area that should be paid attention to. Genetic algorithms are widely used to solve search and optimization problems in various subject areas. The authors propose to automate the process of identifying the tendency of secondary school graduates to a particular type of activity by building a vocational guidance system based on a genetic algorithm.Materials and methods. To identify an individual’s predisposition to a specific type of activity, it is necessary to have a list of requirements and contraindications to the profession. Among the ways of describing the norms and requirements for the applicant-specialist are professiograms, lists of necessary competencies and others. To determine the characteristics of the individual that affect the choice of profession, it is possible to use special tests, activating questionnaires, grades in school subjects. The authors carry out the comparison of personality characteristics and requirements through a genetic algorithm. Genetic algorithms belong to the group of evolutionary methods and are based on the evolutionary theory. Among their advantages are conceptual simplicity and wide applicability, resistance to dynamic environmental changes and the ability to self-organize.Results. The genetic algorithm has been developed, in which as a source of information for creating a new population individual certificate evaluations are accepted. Based on these estimates, an initial population of professions is formed. As a result of crossing a pair of individuals from the parent population, a descendant is obtained whose chromosome consists of the genes of both parents. The selection of surviving specimens is based on the percentage of success in the development of each of the professions in the list and the fitness function. The developed algorithm was implemented in a software system. As experiments showed, the genetic algorithm successfully copes with the task of finding the optimal list of professions according to a given criterion.Conclusion. The results of the study show that the use of genetic algorithms provides convenient mechanisms for introducing artificial intelligence methods into the field of career guidance, which improves the quality of recommendations for choosing a profession.


2011 ◽  
Vol 201-203 ◽  
pp. 1070-1074
Author(s):  
Jing Jing Wu

Numerous real-world problems relating to flow shops scheduling are complex. The main problem is that the solution space is very large and therefore the set of feasible solutions cannot be enumerated one by one. Current approaches to solve these problems are metaheuristics techniques, which fall in two categories: population-based search and trajectory-based search. Because of their complexity, recent research has turned to genetic algorithms to address such problems. In this paper we present an effective hybrid approach based on genetic algorithm (GA) for minimizing the number of tardy jobs in a flow shop consisting of m machines. Jobs with processing times and due dates randomly arrive to the system. We assume that job arrival or release dates are not known in advance. The objective is to minimize the number of tardy jobs. Although genetic algorithms have been proven to facilitate the entire space search, they lack in fine-tuning capability for obtaining the global optimum. Therefore the proposed approach incorporates a fitness functions and a population trained by a local improvement search based on tabu search with a candidate list strategy into GA for the problem which belongs to NP-hard class. Experimentation results show that the number of cells and the crossover strategy adapted affect the number of tardy jobs found. The results also indicate that hybrid genetic algorithm approach improves the solution quality drastically.


Author(s):  
Hamidreza Salmani mojaveri

One of the discussed topics in scheduling problems is Dynamic Flexible Job Shop with Parallel Machines (FDJSPM). Surveys show that this problem because of its concave and nonlinear nature usually has several local optimums. Some of the scheduling problems researchers think that genetic algorithms (GA) are appropriate approach to solve optimization problems of this kind. But researches show that one of the disadvantages of classical genetic algorithms is premature convergence and the probability of trap into the local optimum. Considering these facts, in present research, represented a developed genetic algorithm that its controlling parameters change during algorithm implementation and optimization process. This approach decreases the probability of premature convergence and trap into the local optimum. The several experiments were done show that the priority of proposed procedure of solving in field of the quality of obtained solution and convergence speed toward other present procedure.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


Author(s):  
ZOHEIR EZZIANE

Probabilistic and stochastic algorithms have been used to solve many hard optimization problems since they can provide solutions to problems where often standard algorithms have failed. These algorithms basically search through a space of potential solutions using randomness as a major factor to make decisions. In this research, the knapsack problem (optimization problem) is solved using a genetic algorithm approach. Subsequently, comparisons are made with a greedy method and a heuristic algorithm. The knapsack problem is recognized to be NP-hard. Genetic algorithms are among search procedures based on natural selection and natural genetics. They randomly create an initial population of individuals. Then, they use genetic operators to yield new offspring. In this research, a genetic algorithm is used to solve the 0/1 knapsack problem. Special consideration is given to the penalty function where constant and self-adaptive penalty functions are adopted.


Sign in / Sign up

Export Citation Format

Share Document