Reversible Data Hiding Based on Statistical Correlation of Blocked Sub-Sampled Image

Author(s):  
Mona Nafari ◽  
Mansour Nejati Jahromi ◽  
Gholam Hosein Sheisi

In this paper, a reversible data hiding scheme has been proposed which is based on correlation of subsample images. The proposed method modifies the blocks of sub-sampled image to prepare vacant positions for data embedding. The PSNR of the stego image produced by the proposed method is guaranteed to be above 47.5 dB, while the embedding capacity is at least, almost 6.5 times higher than that of the Kim et al. techniques with the same PSNR. This technique has the capability to control the capacity-PSNR. Experimental results support that the proposed method exploits the correlation of blocked sub-sampled image outperforms the prior works in terms of larger capacity and stego image quality. On various test images, the authors demonstrate the validity of the proposed method by comparing it with other existing reversible data hiding algorithms.

Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


2019 ◽  
Vol 78 (13) ◽  
pp. 18595-18616
Author(s):  
Ching-Nung Yang ◽  
Song-Yu Wu ◽  
Yung-Shun Chou ◽  
Cheonshik Kim

2020 ◽  
Vol 36 (2) ◽  
pp. 139-158
Author(s):  
Nguyen Kim Sao ◽  
Nguyen Ngoc Hoa ◽  
Pham Van At

This paper presents a new effective reversible data hiding method based on pixel-value-ordering (iGePVO-K) which is improvement of a recent GePVO-K method that recently is considered as a PVO-used method having highest embedding capacity. In comparison with GePVO-K method, iGePVO-K has the following advantages. First, the embedding capacity of the new method is higher than that of GePVO-K method by using data embedding formulas reasonably and reducing the location map size. Second, for embedding data, in the new method, each pixel value is modified at most by one, while in GePVO-K method, each pixel value may be modified by two. In fact, in the GePVO-K method, the largest pixels are modified by two for embedding bits 1 and by one for bits 0. This is also true for the smallest pixels. Meanwhile, in the proposed method, the largest pixels are modified by one for embedding bits 1 and are unchanged if embedding bits 0. Therefore, the stego-image quality in proposed method is better than that in GePVO-K method. Theoretical analysis and experiment results show that the proposed method has higher embedding capacity and better stego image quality than GePVO-K method.


2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2020 ◽  
Author(s):  
Xinyang Ying ◽  
Guobing Zhou

Abstract The reversible data hiding allows original image to be completely recovered from the stego image when the secret data has been extracted, it is has drawn a lot of attentions from researchers. In this paper, a novel Taylor Expansion (TE) based stereo image reversible data hiding method is presented. Since the prediction accuracy is essential to the data hiding performance, a novel TE based predictor using correlations of two views of the stereo image is proposed. TE can fully exploit strong relationships between matched pixels in the stereo image so that the accuracy of the prediction can be improved. Then, histogram shifting is utilized to embed data to decrease distortion of stereo images, and multi-level hiding can increase embedding capacity. Experimental results show that the proposed method is superior to some existing data hiding methods considering embedding capacity and the quality of the stego stereo images.


2020 ◽  
Vol 39 (3) ◽  
pp. 2977-2990
Author(s):  
R. Anushiadevi ◽  
Padmapriya Praveenkumar ◽  
John Bosco Balaguru Rayappan ◽  
Rengarajan Amirtharajan

Digital image steganography algorithms usually suffer from a lossy restoration of the cover content after extraction of a secret message. When a cover object and confidential information are both utilised, the reversible property of the cover is inevitable. With this objective, several reversible data hiding (RDH) algorithms are available in the literature. Conversely, because both are diametrically related parameters, existing RDH algorithms focus on either a good embedding capacity (EC) or better stego-image quality. In this paper, a pixel expansion reversible data hiding (PE-RDH) method with a high EC and good stego-image quality are proposed. The proposed PE-RDH method was based on three typical RDH schemes, namely difference expansion, histogram shifting, and pixel value ordering. The PE-RDH method has an average EC of 0.75 bpp, with an average peak signal-to-noise ratio (PSNR) of 30.89 dB. It offers 100% recovery of the original image and confidential hidden messages. To protect secret as well as cover the proposed PE-RDH is also implemented on the encrypted image by using homomorphic encryption. The strength of the proposed method on the encrypted image was verified based on a comparison with several existing methods, and the approach achieved better results than these methods in terms of its EC, location map size and imperceptibility of directly decrypted images.


2012 ◽  
Vol 263-266 ◽  
pp. 2519-2523
Author(s):  
Mei Yi Wu ◽  
Jia Hong Lee

In this paper, we propose a high capacity reversible data hiding method for error diffused halftone images. It is a challenge to conceal data in halftone images due to their smaller depth. We utilize statistical features of pixel block patterns to embed data. The marked images can be perfectly reconstructed into their original halftone images. Traditional pair-based schemes selected two similar patterns as one pair to toggle one-bit data embedding. We extend the approaches and present a group-based encoding scheme to collect similar patterns into groups for multi-bits embedding. Experimental results show the proposed method can significantly improve the capacity of marked halftone images while preserve the similar marked image quality.


2019 ◽  
Vol 8 (3) ◽  
pp. 1128-1134
Author(s):  
Chaidir Chalaf Islamy ◽  
Tohari Ahmad

In this modern age, data can be easily transferred within networks. This condition has brought the data vulnerable; so they need protection at all times. To minimize this threat, data hiding appears as one of the potential methods to secure data. This protection is done by embedding the secret into various types of data, such as an image. In this case, histogram shifting has been proposed; however, the amount of secret and the respective stego image are still challenging. In this research, we offer a method to improve its performance by performing some steps, for example removing the shifting process and employing multilayer embedding. Here, the embedding is done directly to the peak of the histogram which has been generated by the cover. The experimental results show that this proposed method has a better quality of stego image than existing ones. So, it can be one of possible solutions to protect sensitive data.


2018 ◽  
Vol 27 (11) ◽  
pp. 1850175 ◽  
Author(s):  
Neeraj Kumar Jain ◽  
Singara Singh Kasana

The proposed reversible data hiding technique is the extension of Peng et al.’s technique [F. Peng, X. Li and B. Yang, Improved PVO-based reversible data hiding, Digit. Signal Process. 25 (2014) 255–265]. In this technique, a cover image is segmented into nonoverlapping blocks of equal size. Each block is sorted in ascending order and then differences are calculated on the basis of locations of its largest and second largest pixel values. Negative predicted differences are utilized to create empty spaces which further enhance the embedding capacity of the proposed technique. Also, the already sorted blocks are used to enhance the visual quality of marked images as pixels of these blocks are more correlated than the unsorted pixels of the block. Experimental results show the effectiveness of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document