Enhanced stego-image quality and embedding capacity for the partial reversible data hiding scheme

2019 ◽  
Vol 78 (13) ◽  
pp. 18595-18616
Author(s):  
Ching-Nung Yang ◽  
Song-Yu Wu ◽  
Yung-Shun Chou ◽  
Cheonshik Kim
2020 ◽  
Vol 36 (2) ◽  
pp. 139-158
Author(s):  
Nguyen Kim Sao ◽  
Nguyen Ngoc Hoa ◽  
Pham Van At

This paper presents a new effective reversible data hiding method based on pixel-value-ordering (iGePVO-K) which is improvement of a recent GePVO-K method that recently is considered as a PVO-used method having highest embedding capacity. In comparison with GePVO-K method, iGePVO-K has the following advantages. First, the embedding capacity of the new method is higher than that of GePVO-K method by using data embedding formulas reasonably and reducing the location map size. Second, for embedding data, in the new method, each pixel value is modified at most by one, while in GePVO-K method, each pixel value may be modified by two. In fact, in the GePVO-K method, the largest pixels are modified by two for embedding bits 1 and by one for bits 0. This is also true for the smallest pixels. Meanwhile, in the proposed method, the largest pixels are modified by one for embedding bits 1 and are unchanged if embedding bits 0. Therefore, the stego-image quality in proposed method is better than that in GePVO-K method. Theoretical analysis and experiment results show that the proposed method has higher embedding capacity and better stego image quality than GePVO-K method.


Author(s):  
Mona Nafari ◽  
Mansour Nejati Jahromi ◽  
Gholam Hosein Sheisi

In this paper, a reversible data hiding scheme has been proposed which is based on correlation of subsample images. The proposed method modifies the blocks of sub-sampled image to prepare vacant positions for data embedding. The PSNR of the stego image produced by the proposed method is guaranteed to be above 47.5 dB, while the embedding capacity is at least, almost 6.5 times higher than that of the Kim et al. techniques with the same PSNR. This technique has the capability to control the capacity-PSNR. Experimental results support that the proposed method exploits the correlation of blocked sub-sampled image outperforms the prior works in terms of larger capacity and stego image quality. On various test images, the authors demonstrate the validity of the proposed method by comparing it with other existing reversible data hiding algorithms.


2020 ◽  
Author(s):  
Xinyang Ying ◽  
Guobing Zhou

Abstract The reversible data hiding allows original image to be completely recovered from the stego image when the secret data has been extracted, it is has drawn a lot of attentions from researchers. In this paper, a novel Taylor Expansion (TE) based stereo image reversible data hiding method is presented. Since the prediction accuracy is essential to the data hiding performance, a novel TE based predictor using correlations of two views of the stereo image is proposed. TE can fully exploit strong relationships between matched pixels in the stereo image so that the accuracy of the prediction can be improved. Then, histogram shifting is utilized to embed data to decrease distortion of stereo images, and multi-level hiding can increase embedding capacity. Experimental results show that the proposed method is superior to some existing data hiding methods considering embedding capacity and the quality of the stego stereo images.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


2020 ◽  
Vol 39 (3) ◽  
pp. 2977-2990
Author(s):  
R. Anushiadevi ◽  
Padmapriya Praveenkumar ◽  
John Bosco Balaguru Rayappan ◽  
Rengarajan Amirtharajan

Digital image steganography algorithms usually suffer from a lossy restoration of the cover content after extraction of a secret message. When a cover object and confidential information are both utilised, the reversible property of the cover is inevitable. With this objective, several reversible data hiding (RDH) algorithms are available in the literature. Conversely, because both are diametrically related parameters, existing RDH algorithms focus on either a good embedding capacity (EC) or better stego-image quality. In this paper, a pixel expansion reversible data hiding (PE-RDH) method with a high EC and good stego-image quality are proposed. The proposed PE-RDH method was based on three typical RDH schemes, namely difference expansion, histogram shifting, and pixel value ordering. The PE-RDH method has an average EC of 0.75 bpp, with an average peak signal-to-noise ratio (PSNR) of 30.89 dB. It offers 100% recovery of the original image and confidential hidden messages. To protect secret as well as cover the proposed PE-RDH is also implemented on the encrypted image by using homomorphic encryption. The strength of the proposed method on the encrypted image was verified based on a comparison with several existing methods, and the approach achieved better results than these methods in terms of its EC, location map size and imperceptibility of directly decrypted images.


2021 ◽  
Vol 11 (2) ◽  
pp. 635
Author(s):  
Yan-Hong Chen ◽  
Chin-Chen Chang ◽  
Chia-Chen Lin ◽  
Zhi-Ming Wang

Hiding a message in compression codes can reduce transmission costs and simultaneously make the transmission more secure. This paper presents an adaptive reversible data hiding scheme that is able to provide large embedding capacity while improving the quantity of modified images. The proposed scheme employs the quantization level difference (QLD) and interpolation technique to adaptively embed the secret information into pixels of each absolute moment block truncation coding (AMBTC)-compressed block, except for the positions of two replaced quantization levels. The values of QLD tend to be much larger in complex areas than in smooth areas. In other words, our proposed method can obtain good performance for embedding capacity and still meets the requirement for better modified image quality when the image is complex. The performance of the proposed approach was compared to previous image hiding methods. The experimental results show that our approach outperforms referenced approaches.


2021 ◽  
Vol 11 (21) ◽  
pp. 10157
Author(s):  
Chin-Feng Lee ◽  
Hua-Zhe Wu

In previous research, scholars always think about how to improve the information hiding algorithm and strive to have the largest embedding capacity and better image quality, restoring the original image. This research mainly proposes a new robust and reversible information hiding method, recurrent robust reversible data hiding (triple-RDH), with a recurrent round-trip embedding strategy. We embed the secret message in a quotient image to increase the image robustness. The pixel value is split into two parts, HiSB and LoSB. A recurrent round-trip embedding strategy (referred to as double R-TES) is designed to adjust the predictor and the recursive parameter values, so the pixel value carrying the secret data bits can be first shifted to the right and then shifted to the left, resulting in pixel invariance, so the embedding capacity can be effectively increased repeatedly. Experimental results show that the proposed triple-RDH method can effectively increase the embedding capacity up to 310,732 bits and maintain a certain level of image quality. Compared with the existing pixel error expansion (PEE) methods, the triple-RDH method not only has a high capacity but also has robustness for image processing against unintentional attacks. It can also be used for capacity and image quality according to the needs of the application, performing adjustable embedding.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Lin Li ◽  
Chin-Chen Chang ◽  
Hefeng Chen

Reversible data hiding (RDH) is a method that allows a cover image to be completely recovered from its corresponding stego image without distortion after the embedded secret messages have been extracted. Prediction-error expansion (PEE), as a classic RDH scheme, has been studied extensively due to its high quality of stego images. Based on prediction errors, threshold values, and the relative distances between each bin and zero bin, we present a bidirectional shift and double-way prediction strategy to solve the multiple embedding problem. Compared with the original algorithm, this scheme only takes a little more time and reduces the PSNR slightly, but it improves the embedding capacity significantly and allows for reversible data hiding. When both threshold values of TH and TH∗ are equal to 2, the average ER value of 108 test images is 1.2 bpp which is ideal for medium data payload. At the same time, the PSNR is above 30 dB, making embedded information visually imperceptible. These data, together with other experimental results, show that the method proposed in this paper has obvious advantages in image quality and embedding capacity.


Computers ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 86
Author(s):  
Jijun Wang ◽  
Soo Fun Tan

Separable Reversible Data Hiding in Encryption Image (RDH-EI) has become widely used in clinical and military applications, social cloud and security surveillance in recent years, contributing significantly to preserving the privacy of digital images. Aiming to address the shortcomings of recent works that directed to achieve high embedding rate by compensating image quality, security, reversible and separable properties, we propose a two-tuples coding method by considering the intrinsic adjacent pixels characteristics of the carrier image, which have a high redundancy between high-order bits. Subsequently, we construct RDH-EI scheme by using high-order bits compression, low-order bits combination, vacancy filling, data embedding and pixel diffusion. Unlike the conventional RDH-EI practices, which have suffered from the deterioration of the original image while embedding additional data, the content owner in our scheme generates the embeddable space in advance, thus lessening the risk of image destruction on the data hider side. The experimental results indicate the effectiveness of our scheme. A ratio of 28.91% effectively compressed the carrier images, and the embedding rate increased to 1.753 bpp with a higher image quality, measured in the PSNR of 45.76 dB.


Sign in / Sign up

Export Citation Format

Share Document