Geometrically Invariant Image Watermarking Using Histogram Adjustment

2018 ◽  
Vol 10 (1) ◽  
pp. 54-66
Author(s):  
Zhuoqian Liang ◽  
Bingwen Feng ◽  
Xuba Xu ◽  
Xiaotian Wu ◽  
Tao Yang

In this article, a blind image watermarking scheme, which is a robust against common image processing and geometric attacks is proposed by adopting the concept of histogram-based embedding. The average filter is employed to low-pass pre-filter the host image. The watermark bits are embedded into the histogram of the low-frequency component and the template bits are embedded in the high-frequency residual. The embedding is performed by adjusting the value of two consecutive histogram bins. Furthermore, a post-quantization is employed after the embedding round to improve robustness. All pixel modifications incurred are based on the human visual system (HVS) characteristics. As a result, a good tradeoff between robustness and imperceptibility is achieved. Experimental results reported the satisfactory performance of the proposed scheme with respect to both common image processing and geometric attacks.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Seok Lee ◽  
Young-Ho Seo ◽  
Dong-Wook Kim

This paper proposes a new adaptive watermarking scheme for digital images, which has the properties of blind extraction, invisibility, and robustness against attacks. The typical scheme for invisibility and robustness consisted of two main techniques: finding local positions to be watermarked and mixing or embedding the watermark into the pixels of the locations. In finding the location, however, our scheme uses a global space such that the multiple watermarking data is spread out over all four lowest-frequency subbands, resulting from n-level Mallat-tree 2D (dimensional) DWT, where n depends on the amount of watermarking data and the resolution of the host image, without any further process to find the watermarking locations. To embed the watermark data into the subband coefficients, weighting factors are used according to the type and energy of each subband to adjust the strength of the watermark, so we call this an adaptive scheme. To examine the ability of the proposed scheme, images with various resolutions are tested for various attacks, both pixel-value changing attacks and geometric attacks. With experimental results and comparison to the existing works we show that the proposed scheme has better performance than the previous works, except those which specialize in certain types of attacks.


Author(s):  
Xin Zhong ◽  
Frank Y. Shih

In this paper, we present a robust multibit image watermarking scheme to undertake the common image-processing attacks as well as affine distortions. This scheme combines contrast modulation and effective synchronization for large payload and high robustness. We analyze the robustness, payload, and the lower bound of fidelity. Regarding watermark resynchronization under affine distortions, we develop a self-referencing rectification method to detect the distortion parameters for reconstruction by the center of mass in affine covariant regions. The effectiveness and advantages of the proposed scheme are confirmed by experimental results, which show the superior performance as comparing against several state-of-the-art watermarking methods.


2020 ◽  
Vol 10 (21) ◽  
pp. 7494
Author(s):  
Weitong Chen ◽  
Na Ren ◽  
Changqing Zhu ◽  
Qifei Zhou ◽  
Tapio Seppänen ◽  
...  

The screen-cam process, which is taking pictures of the content displayed on a screen with mobile phones or cameras, is one of the main ways that image information is leaked. However, traditional image watermarking methods are not resilient to screen-cam processes with severe distortion. In this paper, a screen-cam robust watermarking scheme with a feature-based synchronization method is proposed. First, the distortions caused by the screen-cam process are investigated. These distortions can be summarized into the five categories of linear distortion, gamma tweaking, geometric distortion, noise attack, and low-pass filtering attack. Then, a local square feature region (LSFR) construction method based on a Gaussian function, modified Harris–Laplace detector, and speeded-up robust feature (SURF) orientation descriptor is developed for watermark synchronization. Next, the message is repeatedly embedded in each selected LSFR by an improved embedding algorithm, which employs a non-rotating embedding method and a preprocessing method, to modulate the discrete Fourier transform (DFT) coefficients. In the process of watermark detection, we fully utilize the captured information and extract the message based on a local statistical feature. Finally, the experimental results are presented to illustrate the effectiveness of the method against common attacks and screen-cam attacks. Compared to the previous schemes, our scheme has not only good robustness against screen-cam attack, but is also effective against screen-cam with additional common desynchronization attacks.


Sign in / Sign up

Export Citation Format

Share Document