Mining Top-k Regular High-Utility Itemsets in Transactional Databases

2019 ◽  
Vol 15 (1) ◽  
pp. 58-79 ◽  
Author(s):  
P. Lalitha Kumari ◽  
S. G. Sanjeevi ◽  
T.V. Madhusudhana Rao

Mining high-utility itemsets is an important task in the area of data mining. It involves exponential mining space and returns a very large number of high-utility itemsets. In a real-time scenario, it is often sufficient to mine a small number of high-utility itemsets based on user-specified interestingness. Recently, the temporal regularity of an itemset is considered as an important interesting criterion for many applications. Methods for finding the regular high utility itemsets suffers from setting the threshold value. To address this problem, a novel algorithm called as TKRHU (Top k Regular High Utility Itemset) Miner is proposed to mine top-k high utility itemsets that appears regularly where k represents the desired number of regular high itemsets. A novel list structure RUL and efficient pruning techniques are developed to discover the top-k regular itemsets with high profit. Efficient pruning techniques are designed for reducing search space. Experimental results show that proposed algorithm using novel list structure achieves high efficiency in terms of runtime and space.

2021 ◽  
Vol 16 (2) ◽  
pp. 1-31
Author(s):  
Chunkai Zhang ◽  
Zilin Du ◽  
Yuting Yang ◽  
Wensheng Gan ◽  
Philip S. Yu

Utility mining has emerged as an important and interesting topic owing to its wide application and considerable popularity. However, conventional utility mining methods have a bias toward items that have longer on-shelf time as they have a greater chance to generate a high utility. To eliminate the bias, the problem of on-shelf utility mining (OSUM) is introduced. In this article, we focus on the task of OSUM of sequence data, where the sequential database is divided into several partitions according to time periods and items are associated with utilities and several on-shelf time periods. To address the problem, we propose two methods, OSUM of sequence data (OSUMS) and OSUMS + , to extract on-shelf high-utility sequential patterns. For further efficiency, we also design several strategies to reduce the search space and avoid redundant calculation with two upper bounds time prefix extension utility ( TPEU ) and time reduced sequence utility ( TRSU ). In addition, two novel data structures are developed for facilitating the calculation of upper bounds and utilities. Substantial experimental results on certain real and synthetic datasets show that the two methods outperform the state-of-the-art algorithm. In conclusion, OSUMS may consume a large amount of memory and is unsuitable for cases with limited memory, while OSUMS + has wider real-life applications owing to its high efficiency.


2020 ◽  
pp. 1-16
Author(s):  
Rui Sun ◽  
Meng Han ◽  
Chunyan Zhang ◽  
Mingyao Shen ◽  
Shiyu Du

High utility itemset mining(HUIM) with negative utility is an emerging data mining task. However, the setting of the minimum utility threshold is always a challenge when mining high utility itemsets(HUIs) with negative items. Although the top-k HUIM method is very common, this method can only mine itemsets with positive items, and the problem of missing itemsets occurs when mining itemsets with negative items. To solve this problem, we first propose an effective algorithm called THN (Top-k High Utility Itemset Mining with Negative Utility). It proposes a strategy for automatically increasing the minimum utility threshold. In order to solve the problem of multiple scans of the database, it uses transaction merging and dataset projection technology. It uses a redefined sub-tree utility value and a redefined local utility value to prune the search space. Experimental results on real datasets show that THN is efficient in terms of runtime and memory usage, and has excellent scalability. Moreover, experiments show that THN performs particularly well on dense datasets.


2019 ◽  
Vol 18 (04) ◽  
pp. 1113-1185 ◽  
Author(s):  
Bahareh Rahmati ◽  
Mohammad Karim Sohrabi

High utility itemset mining considers unit profits and quantities of items in a transaction database to extract more applicable and more useful association rules. Downward closure property, which causes significant pruning in frequent itemset mining, is not established in the utility of itemsets and so the mining problem will require alternative solutions to reduce its search space and to enhance its efficiency. Using an anti-monotonic upper bound of the utility function and exploiting efficient data structures for storing and compacting the dataset to perform efficient pruning strategies are the main solutions to address high utility itemset mining problem. Different mining methods and techniques have attempted to improve performance of extracting high utility itemsets and their several variants, including high-average utility itemsets, top-k high utility itemsets, and high utility itemsets with negative values, using more efficient data structures, more appropriate anti-monotonic upper bounds, and stronger pruning strategies. This paper aims to represent a comprehensive systematic review for high utility itemset mining techniques and to classify them based on their problem-solving approaches.


2020 ◽  
Vol 1 (2) ◽  
pp. 44-47
Author(s):  
Tung N.T ◽  
Nguyen Le Van ◽  
Trinh Cong Nhut ◽  
Tran Van Sang

The goal of the high-utility itemset mining task is to discover combinations of items that yield high profits from transactional databases. HUIM is a useful tool for retail stores to analyze customer behaviors. However, in the real world, items are found with both positive and negative utility values. To address this issue, we propose an algorithm named Modified Efficient High‐utility Itemsets mining with Negative utility (MEHIN) to find all HUIs with negative utility. This algorithm is an improved version of the EHIN algorithm. MEHIN utilizes 2 new upper bounds for pruning, named revised subtree and revised local utility. To reduce dataset scans, the proposed algorithm uses transaction merging and dataset projection techniques. An array‐based utility‐counting technique is also utilized to calculate upper‐bound efficiently. The MEHIN employs a novel structure called P-set to reduce the number of transaction scans and to speed up the mining process. Experimental results show that the proposed algorithms considerably outperform the state-of-the-art HUI-mining algorithms on negative utility in retail databases in terms of runtime.


2013 ◽  
Vol 25 (8) ◽  
pp. 1772-1786 ◽  
Author(s):  
Vincent S. Tseng ◽  
Bai-En Shie ◽  
Cheng-Wei Wu ◽  
Philip S. Yu

Author(s):  
R. Uday Kiran ◽  
Pradeep Pallikila ◽  
J. M. Luna ◽  
Philippe Fournier-Viger ◽  
Masashi Toyoda ◽  
...  

2017 ◽  
Vol 33 ◽  
pp. 29-43 ◽  
Author(s):  
Jerry Chun-Wei Lin ◽  
Jiexiong Zhang ◽  
Philippe Fournier-Viger ◽  
Tzung-Pei Hong ◽  
Ji Zhang

Sign in / Sign up

Export Citation Format

Share Document