Frequent Itemset Mining in Large Datasets a Survey

2017 ◽  
Vol 7 (4) ◽  
pp. 37-49
Author(s):  
Amrit Pal ◽  
Manish Kumar

Frequent Itemset Mining is a well-known area in data mining. Most of the techniques available for frequent itemset mining requires complete information about the data which can result in generation of the association rules. The amount of data is increasing day by day taking form of BigData, which require changes in the algorithms for working on such large-scale data. Parallel implementation of the mining techniques can provide solutions to this problem. In this paper a survey of frequent itemset mining techniques is done which can be used in a parallel environment. Programming models like Map Reduce provides efficient architecture for working with BigData, paper also provides information about issues and feasibility about technique to be implemented in such environment.

Author(s):  
Priyanka R. ◽  
Mohammed Ibrahim M. ◽  
Ranjith Kumar M.

In today’s world, voluminous data are available which are generated from various sources in various forms. Mining or analyzing this large scale data in an efficient way so as to make them useful for the mankind is difficult with the existing approaches. Frequent itemset mining is one such technique used for analyzing in many fields like finance, health care system where the main focus is gathering frequent patterns and grouping them to be meaningful inorder to gather useful insights from the data. Some major applications include customer segmentation in marketing, shopping cart analyses, management relationship, web usage mining, player tracking and so on. Many parallel algorithms, like Dist-Eclat Algorithm, Big FIM algorithm are available to perform large scale Frequent itemset mining. In Dist-Eclat algorithm, datasets are partitioned using Round Robin technique which uses a hybrid partitioning approach, which can improve the overall efficiency of the system. The system works as follows: Initially the data collected are distributed by mapreduce. Then the local frequent k-itmesets are computed using FP-Tree and sent to the map phase. Later the mining results are combined to the center node. Finally, global frequent itemsets are gathered by mapreduce. The proposed system is expected to improve in efficiency by using hybrid partitioning approach in the datasets based on the identification of frequent items.


Author(s):  
Nur Rokhman ◽  
Amelia Nursanti

The implementation of parallel algorithms is very interesting research recently. Parallelism is very suitable to handle large-scale data processing. MapReduce is one of the parallel and distributed programming models. The implementation of parallel programming faces many difficulties. The Cascading gives easy scheme of Hadoop system which implements MapReduce model.Frequent itemsets are most often appear objects in a dataset. The Frequent Itemset Mining (FIM) requires complex computation. FIM is a complicated problem when implemented on large-scale data. This paper discusses the implementation of MapReduce model on Cascading for FIM. The experiment uses the Amazon dataset product co-purchasing network metadata.The experiment shows the fact that the simple mechanism of Cascading can be used to solve FIM problem. It gives time complexity O(n), more efficient than the nonparallel which has complexity O(n2/m).


2018 ◽  
Vol 439-440 ◽  
pp. 19-38 ◽  
Author(s):  
Kang-Wook Chon ◽  
Sang-Hyun Hwang ◽  
Min-Soo Kim

Author(s):  
Krzysztof Jurczuk ◽  
Marcin Czajkowski ◽  
Marek Kretowski

AbstractThis paper concerns the evolutionary induction of decision trees (DT) for large-scale data. Such a global approach is one of the alternatives to the top-down inducers. It searches for the tree structure and tests simultaneously and thus gives improvements in the prediction and size of resulting classifiers in many situations. However, it is the population-based and iterative approach that can be too computationally demanding to apply for big data mining directly. The paper demonstrates that this barrier can be overcome by smart distributed/parallel processing. Moreover, we ask the question whether the global approach can truly compete with the greedy systems for large-scale data. For this purpose, we propose a novel multi-GPU approach. It incorporates the knowledge of global DT induction and evolutionary algorithm parallelization together with efficient utilization of memory and computing GPU’s resources. The searches for the tree structure and tests are performed simultaneously on a CPU, while the fitness calculations are delegated to GPUs. Data-parallel decomposition strategy and CUDA framework are applied. Experimental validation is performed on both artificial and real-life datasets. In both cases, the obtained acceleration is very satisfactory. The solution is able to process even billions of instances in a few hours on a single workstation equipped with 4 GPUs. The impact of data characteristics (size and dimension) on convergence and speedup of the evolutionary search is also shown. When the number of GPUs grows, nearly linear scalability is observed what suggests that data size boundaries for evolutionary DT mining are fading.


2019 ◽  
Vol 34 (1) ◽  
pp. 101-123 ◽  
Author(s):  
Taito Lee ◽  
Shin Matsushima ◽  
Kenji Yamanishi

Abstract We consider the class of linear predictors over all logical conjunctions of binary attributes, which we refer to as the class of combinatorial binary models (CBMs) in this paper. CBMs are of high knowledge interpretability but naïve learning of them from labeled data requires exponentially high computational cost with respect to the length of the conjunctions. On the other hand, in the case of large-scale datasets, long conjunctions are effective for learning predictors. To overcome this computational difficulty, we propose an algorithm, GRAfting for Binary datasets (GRAB), which efficiently learns CBMs within the $$L_1$$L1-regularized loss minimization framework. The key idea of GRAB is to adopt weighted frequent itemset mining for the most time-consuming step in the grafting algorithm, which is designed to solve large-scale $$L_1$$L1-RERM problems by an iterative approach. Furthermore, we experimentally showed that linear predictors of CBMs are effective in terms of prediction accuracy and knowledge discovery.


Author(s):  
Karthikeyani Visalakshi N. ◽  
Shanthi S. ◽  
Lakshmi K.

Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selection of initial centroids, these algorithms provide the local optima in solutions. To solve these issues, the strategy of Crow Search algorithm is employed with these algorithms to obtain the global optimum solution. With the advances in information technology, the size of data increased in a drastic manner from terabytes to petabytes. To make proposed algorithms suitable to handle these voluminous data, the phenomena of parallel implementation of these clustering algorithms with Hadoop Mapreduce framework. The proposed algorithms are experimented with large scale data and the results are compared in terms of cluster evaluation measures and computation time with the number of nodes.


Cluster analysis is the prominent data mining technique in knowledge discovery and it discovers the hidden patterns from the data. The K-Means, K-Modes and K-Prototypes are partition based clustering algorithms and these algorithms select the initial centroids randomly. Because of its random selection of initial centroids, these algorithms provide the local optima in solutions. To solve these issues, the strategy of Crow Search algorithm is employed with these algorithms to obtain the global optimum solution. With the advances in information technology, the size of data increased in a drastic manner from terabytes to petabytes. To make proposed algorithms suitable to handle these voluminous data, the phenomena of parallel implementation of these clustering algorithms with Hadoop Mapreduce framework. The proposed algorithms are experimented with large scale data and the results are compared in terms of cluster evaluation measures and computation time with the number of nodes.


Sign in / Sign up

Export Citation Format

Share Document