An Optimized Bandwidth Estimation for Adaptive Video Streaming Systems Using WLBWO Algorithm

Author(s):  
Sanjay Agal ◽  
Priyank K. Gokani

The increasing popularity of streaming video is a cause of concern for the stability of the internet because most streaming video content is currently delivered via UDP without any end-to-end congestion control. Since the internet relies on end systems implementing transmit rate regulation, there has recently been significant interest in congestion control mechanisms that are both fair to TCP and effective in delivering real-time streams. Streaming video over the internet requires dealing with bandwidth and delay that vary over time. Many video streaming applications address this problem by adapting the quality of the scalable video. But it produces poor quality service, and sending data on this channel results in buffering time. To trounce these issues, this paper proposed optimized bandwidth estimation for adaptive video streaming systems using the WLBWO algorithm. Originally, the input video is compressed by using the UHE algorithm. Next, the system proposes a KEECC to securely transfer the data. Then, the encrypted data is sent to the receiver via a multipath channel. Before sending the data to the receiver, the bandwidth is estimated by using the WLBWO. Finally, the inverse process is performed. Extensive experimental results showed the effectiveness of the proposed system than conventional methods.

2009 ◽  
Vol E92-B (12) ◽  
pp. 3893-3902
Author(s):  
Hyeong-Min NAM ◽  
Chun-Su PARK ◽  
Seung-Won JUNG ◽  
Sung-Jea KO

Author(s):  
Nicola Cranley ◽  
Liam Murphy

There is an increasing demand for streaming video applications over both the fixed Internet and wireless IP networks. The fluctuating bandwidth and time-varying delays of best-effort networks makes providing good quality streaming a challenge. Many adaptive video delivery mechanisms have been proposed over recent years; however, most do not explicitly consider user-perceived quality when making adaptations, nor do they define what quality is. This chapter describes research that proposes that an optimal adaptation trajectory through the set of possible encodings exists, and indicates how to adapt transmission in response to changes in network conditions in order to maximize user-perceived quality.


2008 ◽  
pp. 1491-1507
Author(s):  
Nicola Cranley ◽  
Liam Murphy

There is an increasing demand for streaming video applications over both the fixed Internet and wireless IP networks. The fluctuating bandwidth and time-varying delays of best-effort networks makes providing good quality streaming a challenge. Many adaptive video delivery mechanisms have been proposed over recent years; however, most do not explicitly consider user-perceived quality when making adaptations, nor do they define what quality is. This chapter describes research that proposes that an optimal adaptation trajectory through the set of possible encodings exists, and indicates how to adapt transmission in response to changes in network conditions in order to maximize user-perceived quality.


Sign in / Sign up

Export Citation Format

Share Document