A Dynamic Scaling Approach in Hadoop YARN

In Cloud based Big Data applications, Hadoop has been widely adopted for distributed processing large scale data sets. However, the wastage of energy consumption of data centers still constitutes an important axis of research due to overuse of resources and extra overhead costs. As a solution to overcome this challenge, a dynamic scaling of resources in Hadoop YARN Cluster is a practical solution. This paper proposes a dynamic scaling approach in Hadoop YARN (DSHYARN) to add or remove nodes automatically based on workload. It is based on two algorithms (scaling up/down) which are implemented to automate the scaling process in the cluster. This article aims to assure energy efficiency and performance of Hadoop YARN’ clusters. To validate the effectiveness of DSHYARN, a case study with sentiment analysis on tweets about covid-19 vaccine is provided. the goal is to analyze tweets of the people posted on Twitter application. The results showed improvement in CPU utilization, RAM utilization and Job Completion time. In addition, the energy has been reduced of 16% under average workload.

2014 ◽  
Vol 571-572 ◽  
pp. 497-501 ◽  
Author(s):  
Qi Lv ◽  
Wei Xie

Real-time log analysis on large scale data is important for applications. Specifically, real-time refers to UI latency within 100ms. Therefore, techniques which efficiently support real-time analysis over large log data sets are desired. MongoDB provides well query performance, aggregation frameworks, and distributed architecture which is suitable for real-time data query and massive log analysis. In this paper, a novel implementation approach for an event driven file log analyzer is presented, and performance comparison of query, scan and aggregation operations over MongoDB, HBase and MySQL is analyzed. Our experimental results show that HBase performs best balanced in all operations, while MongoDB provides less than 10ms query speed in some operations which is most suitable for real-time applications.


Author(s):  
Amir Basirat ◽  
Asad I. Khan ◽  
Heinz W. Schmidt

One of the main challenges for large-scale computer clouds dealing with massive real-time data is in coping with the rate at which unprocessed data is being accumulated. Transforming big data into valuable information requires a fundamental re-think of the way in which future data management models will need to be developed on the Internet. Unlike the existing relational schemes, pattern-matching approaches can analyze data in similar ways to which our brain links information. Such interactions when implemented in voluminous data clouds can assist in finding overarching relations in complex and highly distributed data sets. In this chapter, a different perspective of data recognition is considered. Rather than looking at conventional approaches, such as statistical computations and deterministic learning schemes, this chapter focuses on distributed processing approach for scalable data recognition and processing.


Big Data ◽  
2016 ◽  
pp. 929-940
Author(s):  
Amir Basirat ◽  
Asad I. Khan ◽  
Heinz W. Schmidt

One of the main challenges for large-scale computer clouds dealing with massive real-time data is in coping with the rate at which unprocessed data is being accumulated. Transforming big data into valuable information requires a fundamental re-think of the way in which future data management models will need to be developed on the Internet. Unlike the existing relational schemes, pattern-matching approaches can analyze data in similar ways to which our brain links information. Such interactions when implemented in voluminous data clouds can assist in finding overarching relations in complex and highly distributed data sets. In this chapter, a different perspective of data recognition is considered. Rather than looking at conventional approaches, such as statistical computations and deterministic learning schemes, this chapter focuses on distributed processing approach for scalable data recognition and processing.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yiwen Zhang ◽  
Yuanyuan Zhou ◽  
Xing Guo ◽  
Jintao Wu ◽  
Qiang He ◽  
...  

The K-means algorithm is one of the ten classic algorithms in the area of data mining and has been studied by researchers in numerous fields for a long time. However, the value of the clustering number k in the K-means algorithm is not always easy to be determined, and the selection of the initial centers is vulnerable to outliers. This paper proposes an improved K-means clustering algorithm called the covering K-means algorithm (C-K-means). The C-K-means algorithm can not only acquire efficient and accurate clustering results but also self-adaptively provide a reasonable numbers of clusters based on the data features. It includes two phases: the initialization of the covering algorithm (CA) and the Lloyd iteration of the K-means. The first phase executes the CA. CA self-organizes and recognizes the number of clusters k based on the similarities in the data, and it requires neither the number of clusters to be prespecified nor the initial centers to be manually selected. Therefore, it has a “blind” feature, that is, k is not preselected. The second phase performs the Lloyd iteration based on the results of the first phase. The C-K-means algorithm combines the advantages of CA and K-means. Experiments are carried out on the Spark platform, and the results verify the good scalability of the C-K-means algorithm. This algorithm can effectively solve the problem of large-scale data clustering. Extensive experiments on real data sets show that the accuracy and efficiency of the C-K-means algorithm outperforms the existing algorithms under both sequential and parallel conditions.


2003 ◽  
Vol 1836 (1) ◽  
pp. 132-142 ◽  
Author(s):  
Brian L. Smith ◽  
William T. Scherer ◽  
James H. Conklin

Many states have implemented large-scale transportation management systems to improve mobility in urban areas. These systems are highly prone to missing and erroneous data, which results in drastically reduced data sets for analysis and real-time operations. Imputation is the practice of filling in missing data with estimated values. Currently, the transportation industry generally does not use imputation as a means for handling missing data. Other disciplines have recognized the importance of addressing missing data and, as a result, methods and software for imputing missing data are becoming widely available. The feasibility and applicability of imputing missing traffic data are addressed, and a preliminary analysis of several heuristic and statistical imputation techniques is performed. Preliminary results produced excellent performance in the case study and indicate that the statistical techniques are more accurate while maintaining the natural characteristics of the data.


Author(s):  
Jun Huang ◽  
Linchuan Xu ◽  
Jing Wang ◽  
Lei Feng ◽  
Kenji Yamanishi

Existing multi-label learning (MLL) approaches mainly assume all the labels are observed and construct classification models with a fixed set of target labels (known labels). However, in some real applications, multiple latent labels may exist outside this set and hide in the data, especially for large-scale data sets. Discovering and exploring the latent labels hidden in the data may not only find interesting knowledge but also help us to build a more robust learning model. In this paper, a novel approach named DLCL (i.e., Discovering Latent Class Labels for MLL) is proposed which can not only discover the latent labels in the training data but also predict new instances with the latent and known labels simultaneously. Extensive experiments show a competitive performance of DLCL against other state-of-the-art MLL approaches.


Sign in / Sign up

Export Citation Format

Share Document