Feature Selection for GUMI Kernel-Based SVM in Speech Emotion Recognition

2015 ◽  
Vol 6 (2) ◽  
pp. 57-68 ◽  
Author(s):  
Imen Trabelsi ◽  
Med Salim Bouhlel

Speech emotion recognition is the indispensable requirement for efficient human machine interaction. Most modern automatic speech emotion recognition systems use Gaussian mixture models (GMM) and Support Vector Machines (SVM). GMM are known for their performance and scalability in the spectral modeling while SVM are known for their discriminatory power. A GMM-supervector characterizes an emotional style by the GMM parameters (mean vectors, covariance matrices, and mixture weights). GMM-supervector SVM benefits from both GMM and SVM frameworks. In this paper, the GMM-UBM mean interval (GUMI) kernel based on the Bhattacharyya distance is successfully used. CFSSubsetEval combined with Best first algorithm and Greedy stepwise were also utilized on the supervectors space in order to select the most important features. This framework is illustrated using Mel-frequency cepstral (MFCC) coefficients and Perceptual Linear Prediction (PLP) features on two different emotional databases namely the Surrey Audio-Expressed Emotion and the Berlin Emotional speech Database.

2020 ◽  
pp. 283-293
Author(s):  
Imen Trabelsi ◽  
Med Salim Bouhlel

Automatic Speech Emotion Recognition (SER) is a current research topic in the field of Human Computer Interaction (HCI) with a wide range of applications. The purpose of speech emotion recognition system is to automatically classify speaker's utterances into different emotional states such as disgust, boredom, sadness, neutral, and happiness. The speech samples in this paper are from the Berlin emotional database. Mel Frequency cepstrum coefficients (MFCC), Linear prediction coefficients (LPC), linear prediction cepstrum coefficients (LPCC), Perceptual Linear Prediction (PLP) and Relative Spectral Perceptual Linear Prediction (Rasta-PLP) features are used to characterize the emotional utterances using a combination between Gaussian mixture models (GMM) and Support Vector Machines (SVM) based on the Kullback-Leibler Divergence Kernel. In this study, the effect of feature type and its dimension are comparatively investigated. The best results are obtained with 12-coefficient MFCC. Utilizing the proposed features a recognition rate of 84% has been achieved which is close to the performance of humans on this database.


2016 ◽  
Vol 7 (1) ◽  
pp. 58-68 ◽  
Author(s):  
Imen Trabelsi ◽  
Med Salim Bouhlel

Automatic Speech Emotion Recognition (SER) is a current research topic in the field of Human Computer Interaction (HCI) with a wide range of applications. The purpose of speech emotion recognition system is to automatically classify speaker's utterances into different emotional states such as disgust, boredom, sadness, neutral, and happiness. The speech samples in this paper are from the Berlin emotional database. Mel Frequency cepstrum coefficients (MFCC), Linear prediction coefficients (LPC), linear prediction cepstrum coefficients (LPCC), Perceptual Linear Prediction (PLP) and Relative Spectral Perceptual Linear Prediction (Rasta-PLP) features are used to characterize the emotional utterances using a combination between Gaussian mixture models (GMM) and Support Vector Machines (SVM) based on the Kullback-Leibler Divergence Kernel. In this study, the effect of feature type and its dimension are comparatively investigated. The best results are obtained with 12-coefficient MFCC. Utilizing the proposed features a recognition rate of 84% has been achieved which is close to the performance of humans on this database.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6008 ◽  
Author(s):  
Misbah Farooq ◽  
Fawad Hussain ◽  
Naveed Khan Baloch ◽  
Fawad Riasat Raja ◽  
Heejung Yu ◽  
...  

Speech emotion recognition (SER) plays a significant role in human–machine interaction. Emotion recognition from speech and its precise classification is a challenging task because a machine is unable to understand its context. For an accurate emotion classification, emotionally relevant features must be extracted from the speech data. Traditionally, handcrafted features were used for emotional classification from speech signals; however, they are not efficient enough to accurately depict the emotional states of the speaker. In this study, the benefits of a deep convolutional neural network (DCNN) for SER are explored. For this purpose, a pretrained network is used to extract features from state-of-the-art speech emotional datasets. Subsequently, a correlation-based feature selection technique is applied to the extracted features to select the most appropriate and discriminative features for SER. For the classification of emotions, we utilize support vector machines, random forests, the k-nearest neighbors algorithm, and neural network classifiers. Experiments are performed for speaker-dependent and speaker-independent SER using four publicly available datasets: the Berlin Dataset of Emotional Speech (Emo-DB), Surrey Audio Visual Expressed Emotion (SAVEE), Interactive Emotional Dyadic Motion Capture (IEMOCAP), and the Ryerson Audio Visual Dataset of Emotional Speech and Song (RAVDESS). Our proposed method achieves an accuracy of 95.10% for Emo-DB, 82.10% for SAVEE, 83.80% for IEMOCAP, and 81.30% for RAVDESS, for speaker-dependent SER experiments. Moreover, our method yields the best results for speaker-independent SER with existing handcrafted features-based SER approaches.


Author(s):  
Pavitra Patel ◽  
A. A. Chaudhari ◽  
M. A. Pund ◽  
D. H. Deshmukh

<p>Speech emotion recognition is an important issue which affects the human machine interaction. Automatic recognition of human emotion in speech aims at recognizing the underlying emotional state of a speaker from the speech signal. Gaussian mixture models (GMMs) and the minimum error rate classifier (i.e. Bayesian optimal classifier) are popular and effective tools for speech emotion recognition. Typically, GMMs are used to model the class-conditional distributions of acoustic features and their parameters are estimated by the expectation maximization (EM) algorithm based on a training data set. In this paper, we introduce a boosting algorithm for reliably and accurately estimating the class-conditional GMMs. The resulting algorithm is named the Boosted-GMM algorithm. Our speech emotion recognition experiments show that the emotion recognition rates are effectively and significantly boosted by the Boosted-GMM algorithm as compared to the EM-GMM algorithm.<br />During this interaction, human beings have some feelings that they want to convey to their communication partner with whom they are communicating, and then their communication partner may be the human or machine. This work dependent on the emotion recognition of the human beings from their speech signal<br />Emotion recognition from the speaker’s speech is very difficult because of the following reasons: Because of the existence of the different sentences, speakers, speaking styles, speaking rates accosting variability was introduced. The same utterance may show different emotions. Therefore it is very difficult to differentiate these portions of utterance. Another problem is that emotion expression is depending on the speaker and his or her culture and environment. As the culture and environment gets change the speaking style also gets change, which is another challenge in front of the speech emotion recognition system.</p>


2015 ◽  
Vol 781 ◽  
pp. 551-554 ◽  
Author(s):  
Chaidiaw Thiangtham ◽  
Jakkree Srinonchat

Speech Emotion Recognition has widely researched and applied to some appllication such as for communication with robot, E-learning system and emergency call etc.Speech emotion feature extraction is an importance key to achieve the speech emotion recognition which can be classify for personal identity. Speech emotion features are extracted into several coefficients such as Linear Predictive Coefficients (LPCs), Linear Spectral Frequency (LSF), Zero-Crossing (ZC), Mel-Frequency Cepstrum Coefficients (MFCC) [1-6] etc. There are some of research works which have been done in the speech emotion recgnition. A study of zero-crossing with peak-amplitudes in speech emotion classification is introduced in [4]. The results shown that it provides the the technique to extract the emotion feature in time-domain, which still got the problem in amplitude shifting. The emotion recognition from speech is descrpited in [5]. It used the Gaussian Mixture Model (GMM) for extractor of feature speech. The GMM is provided the good results to reduce the back ground noise, howere it still have to focus on random noise in GMM for recognition model. The speech emotion recognition using hidden markov model and support vector machine is explained in [6]. The results shown the average performance of recognition system according to the features of speech emotion still has got the error information. Thus [1-6] provides the recognition performance which still requiers more focus on speech features.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1888
Author(s):  
Juraj Kacur ◽  
Boris Puterka ◽  
Jarmila Pavlovicova ◽  
Milos Oravec

Many speech emotion recognition systems have been designed using different features and classification methods. Still, there is a lack of knowledge and reasoning regarding the underlying speech characteristics and processing, i.e., how basic characteristics, methods, and settings affect the accuracy, to what extent, etc. This study is to extend physical perspective on speech emotion recognition by analyzing basic speech characteristics and modeling methods, e.g., time characteristics (segmentation, window types, and classification regions—lengths and overlaps), frequency ranges, frequency scales, processing of whole speech (spectrograms), vocal tract (filter banks, linear prediction coefficient (LPC) modeling), and excitation (inverse LPC filtering) signals, magnitude and phase manipulations, cepstral features, etc. In the evaluation phase the state-of-the-art classification method and rigorous statistical tests were applied, namely N-fold cross validation, paired t-test, rank, and Pearson correlations. The results revealed several settings in a 75% accuracy range (seven emotions). The most successful methods were based on vocal tract features using psychoacoustic filter banks covering the 0–8 kHz frequency range. Well scoring are also spectrograms carrying vocal tract and excitation information. It was found that even basic processing like pre-emphasis, segmentation, magnitude modifications, etc., can dramatically affect the results. Most findings are robust by exhibiting strong correlations across tested databases.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1579 ◽  
Author(s):  
Kyoung Ju Noh ◽  
Chi Yoon Jeong ◽  
Jiyoun Lim ◽  
Seungeun Chung ◽  
Gague Kim ◽  
...  

Speech emotion recognition (SER) is a natural method of recognizing individual emotions in everyday life. To distribute SER models to real-world applications, some key challenges must be overcome, such as the lack of datasets tagged with emotion labels and the weak generalization of the SER model for an unseen target domain. This study proposes a multi-path and group-loss-based network (MPGLN) for SER to support multi-domain adaptation. The proposed model includes a bidirectional long short-term memory-based temporal feature generator and a transferred feature extractor from the pre-trained VGG-like audio classification model (VGGish), and it learns simultaneously based on multiple losses according to the association of emotion labels in the discrete and dimensional models. For the evaluation of the MPGLN SER as applied to multi-cultural domain datasets, the Korean Emotional Speech Database (KESD), including KESDy18 and KESDy19, is constructed, and the English-speaking Interactive Emotional Dyadic Motion Capture database (IEMOCAP) is used. The evaluation of multi-domain adaptation and domain generalization showed 3.7% and 3.5% improvements, respectively, of the F1 score when comparing the performance of MPGLN SER with a baseline SER model that uses a temporal feature generator. We show that the MPGLN SER efficiently supports multi-domain adaptation and reinforces model generalization.


Sign in / Sign up

Export Citation Format

Share Document