scholarly journals Enabling Interoperability in the Internet of Things

2017 ◽  
Vol 13 (1) ◽  
pp. 147-167 ◽  
Author(s):  
Alfredo D'Elia ◽  
Fabio Viola ◽  
Luca Roffia ◽  
Paolo Azzoni ◽  
Tullio Salmon Cinotti

Semantic Web technologies act as an interoperability glue among different formats, protocols and platforms, providing a uniform vision of heterogeneous devices and services in the Internet of Things (IoT). Semantic Web technologies can be applied to a broad range of application contexts (i.e., industrial automation, automotive, health care, defense, finance, smart cities) involving heterogeneous actors (i.e., end users, communities, public authorities, enterprises). Smart-M3 is a semantic publish-subscribe software architecture conceived to merge the Semantic Web and the IoT domains. It is based on a core component (SIB, Semantic Information Broker) where data is stored as RDF graphs, and software agents using SPARQL to update, retrieve and subscribe to changes in the data store. This article describes a OSGi SIB implementation extended with a new persistent SPARQL update primitive. The OSGi SIB performance has been evaluated and compared with the reference C implementation. Eventually, a first porting on Android is presented.

Author(s):  
Leila Zemmouchi-Ghomari

Industry 4.0 is a technology-driven manufacturing process that heavily relies on technologies, such as the internet of things (IoT), cloud computing, web services, and big real-time data. Industry 4.0 has significant potential if the challenges currently being faced by introducing these technologies are effectively addressed. Some of these challenges consist of deficiencies in terms of interoperability and standardization. Semantic Web technologies can provide useful solutions for several problems in this new industrial era, such as systems integration and consistency checks of data processing and equipment assemblies and connections. This paper discusses what contribution the Semantic Web can make to Industry 4.0.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1163 ◽  
Author(s):  
Víctor Caballero ◽  
Sergi Valbuena ◽  
David Vernet ◽  
Agustín Zaballos

The Internet of Things scenario is composed of an amalgamation of physical devices. Those physical devices are heterogeneous in their nature both in terms of communication protocols and in data exchange formats. The Web of Things emerged as a homogenization layer that uses well-established web technologies and semantic web technologies to exchange data. Therefore, the Web of Things enables such physical devices to the web, they become Web Things. Given such a massive number of services and processes that the Internet of Things/Web of Things enables, it has become almost mandatory to describe their properties and characteristics. Several web ontologies and description frameworks are devoted to that purpose. Ontologies such as SOSA/SSN or OWL-S describe the Web Things and their procedures to sense or actuate. For example, OWL-S complements SOSA/SSN in describing the procedures used for sensing/actuating. It is, however, not its scope to be specific enough to enable a computer program to interpret and execute the defined flow of control. In this work, it is our goal to investigate how we can model those procedures using web ontologies in a manner that allows us to directly deploy the procedure implementation. A prototype implementation of the results of our research is implemented along with an analysis of several use cases to show the generality of our proposal.


Author(s):  
Wendy W. Fok ◽  

Minerva Tantoco was named New York City’s first chief technology officer last year, charged with developing a coordinated citywide strategy on technology and innovation. We’re likely to see more of that as cities around the country, and around the world, consider how best to use innovation and technology to operate as “smart cities.”The work has major implications for energy use and sustainability, as cities take advantage of available, real-time data – from ‘smart’ phones, computers, traffic monitoring, and even weather patterns — to shift the way in which heating and cooling systems, landscaping, flow of people through cities, and other pieces of urban life are controlled. But harnessing Open Innovation and the Internet of Things can promote sustainability on a much broader and deeper scale. The question is, how do you use all the available data to create a more environmentally sound future? The term “Internet of Things” was coined in 1999 by Kevin Ashton, who at the time was a brand manager trying to find a better way to track inventory. His idea? Put a microchip on the packaging to let stores know what was on the shelves.


2021 ◽  
Vol 34 (02) ◽  
pp. 1032-1038
Author(s):  
Arya Majidi

Population growth and urbanization have led to an increase in the rate of waste production, the lack of timely and proper management of which will have adverse effects on human life and the environment. Since most of the waste management costs are spent on waste collection and transportation, it is necessary to find solutions to control the huge costs of this sector. On the other hand, today, intelligent technologies are used globally as solutions to meet challenges in various fields such as agriculture to improve agro-industrial production, transportation, and waste management, which creates a concept called smart cities. One of the categories that has changed the concept of cities and made them have easier and smarter answers to various events and needs is the "Internet of Things", in which many cases and infrastructures with new hardware technologies and Software are integrated. Waste collection is no exception to this rule and efforts have been made to make it smarter. In this research, some of the latest innovations presented globally in order to make trash smarter have been examined.


Author(s):  
Makeri Yakubu Ajiji ◽  
Xi’an Jiaotong Victor Chang ◽  
Targio Hashem Ibrahim Abaker ◽  
Uzorka Afam ◽  
T Cirella Giuseppe

Today the world is becoming connected. The number of devices that are connected are increasing day by day. Many studies reveal that about 50 billion devices would be connected by 2020 indicating that Internet of things have a very big role to play in the future to come Considering the perplexing engineering of Smart City conditions, it ought not to be failed to remember that their establishment lies in correspondence advancements that permit availability and information move between the components in Smart City conditions. Remote interchanges with their capacities speak to Smart City empowering advancements that give the open door for their fast and effective execution and extension as well. The gigantic weight towards the proficient city the board has triggered various Smart City activities by both government and private area businesses to put resources into Information and Communication Technologies to discover feasible answers for the assorted chances and difficulties (e.g., waste the executives). A few specialists have endeavored to characterize a lot of shrewd urban areas and afterward recognize openings and difficulties in building brilliant urban communities. This short article likewise expresses the progressing movement of the Internet of Things and its relationship to keen urban communities. Advancement in ICT and data sharing innovation are the drivers of keen city degree and scale. This quick development is changing brilliant city development with the beginning of the Internet of Things (IoT). This transformation additionally speaks to difficulties in building (Kehua, Li, and Fu ,Su et al.1). By knowing the attributes of specific advances, the experts will have the occasion to create proficient, practical, and adaptable Smart City frameworks by actualizing the most reasonable one.


2020 ◽  
Vol 43 (338) ◽  
pp. 27-34
Author(s):  
Lasma Licite-Kurbe ◽  
Athul Chandramohan

AbstractThe Internet of Things (IoT) is a computing concept that describes the idea of everyday physical objects being connected to the Internet and being able to identify themselves to other devices, and day by day it becomes popular in everyday life as well as in entrepreneurship. The IoT covers broad areas, including manufacturing, the health sector, agriculture, smart cities, security and emergencies among many others. The market for the industrial IoT is estimated to surpass 107 billion euros by 2021 and reach a compound annual growth rate of 7.3% as of 2020. The IoT makes an impact on all industries and provides benefits for various areas of business; however, business may be faced with some risks as well. The research aim is to analyse the benefits and risks of the IoT in entrepreneurship. The descriptive method, analysis and synthesis, the induction and deduction methods were used to achieve the aim. The research has revealed that the IoT can provide several opportunities for business in all fields of operations – marketing, logistics, accounting and human resource management. However, businesses may be faced with some challenges related to privacy and security, processing, analysis and management of data, as well as monitoring and sensing.


Sign in / Sign up

Export Citation Format

Share Document