Image Fusion of ECT/ERT for Oil-Gas-Water Three-Phase Flow

Author(s):  
Lifeng Zhang

The tomographic imaging of process parameters for oil-gas-water three-phase flow can be obtained through different sensing modalities, such as electrical resistance tomography (ERT) and electrical capacitance tomography (ECT), both of which are sensitive to specific properties of the objects to be imaged. However, it is hard to discriminate oil, gas and water phases merely from reconstructed images of ERT or ECT. In this paper, the feasibility of image fusion based on ERT and ECT reconstructed images was investigated for oil-gas-water three-phase flow. Two cases were discussed and pixel-based image fusion method was presented. Simulation results showed that the cross-sectional reconstruction images of oil-gas-water three-phase flow can be obtained using the presented methods.

2013 ◽  
Vol 483 ◽  
pp. 397-400
Author(s):  
Li Feng Zhang

Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are sensitive to resistivity and permittivity distributions of the object to be imaged. However, it is hard to discriminate oil, gas and water phases only using ERT or ECT. In this paper, image fusion based on ERT and ECT reconstructed images was investigated for oil-gas-water three-phase flow. And then, pixel-based image fusion method was presented. Simulation results showed that the cross-sectional reconstruction images of oil-gas-water three-phase flow can be obtained using the presented methods for discussed cases.


Author(s):  
Lifeng Zhang

The tomographic imaging of process parameters for oil-gas-water three-phase flow can be obtained through different sensing modalities, such as electrical resistance tomography (ERT) and electrical capacitance tomography (ECT), both of which are sensitive to specific properties of the objects to be imaged. However, it is hard to discriminate oil, gas and water phases merely from reconstructed images of ERT or ECT. In this paper, the feasibility of image fusion based on ERT and ECT reconstructed images was investigated for oil-gas-water three-phase flow. Two cases were discussed and pixel-based image fusion method was presented. Simulation results showed that the cross-sectional reconstruction images of oil-gas-water three-phase flow can be obtained using the presented methods.


Author(s):  
Ali I. Hameed ◽  
Lokman A. Abdulkareem ◽  
Raid A. Mahmood

Two-phase flow behaviour and its flow patterns have a significant effect in many applications in industry. Oil-gas is one of the two-phase flow types that have many applications in petroleum and power stations. An oil-gas two-phase flow behaviour and flow patterns have been investigated in an inclined pipe using two different tomography sensors: Wire Mesh sensor (WMS) and Electrical Capacitance Tomography (ECT). A special experimental facility was designed and built to operate the tow-phase flow application in the inclined pipe with the various angle of inclination. A set of experimental data were collected using operating conditions which covered a two-phase flow range of superficial velocity of gas (Usl) from 0.05 to 0.52 m/s and superficial velocity of liquid (Usg) from 0.05 to 4.7 m/s at atmospheric pressure and room temperature. Three inclined angles to change the pipe’s inclination 45, 60, and 80-degree were applied in the experiments. The Comparison between the Wire Mesh Sensor (WMS) and Electrical Capacitance Tomography (ECT) was completed experimentally. The results revealed that there is a good agreement between the two sensors, however; the WMS had a higher frequency which was calculated 1000 frames per second compared with the ECT which worked at 200 frames per second.


2013 ◽  
Vol 734-737 ◽  
pp. 3016-3021 ◽  
Author(s):  
Hai Yan Cao ◽  
Xue Mei Duan ◽  
Hua Xiang Wang

Electrical Capacitance Tomography technique is a new technique for multi-phase flow measurement. With broad application prospects, the purpose of this technique is to identify each phases composition of two-phase/multi-phase flow system in a closed pipe. A new method COMSOL was used to analysis the electrical capacitance tomography of reconstruction image and simulation research. First of all, different electrical models were established, and the reconstruction images of four kinds of representative flow were achieved; In addition, through simulation study of the field with disperse phase, the influence of the electrode number, shielding case and radial electrode to the imaging quality were analyzed; Finally, the reconstruction images of three-phase flow were achieved to obtain the satisfactory result.


Author(s):  
Yusuke Hirose ◽  
Kazuaki Hata ◽  
Sapkota Achyut ◽  
Masahiro Takei

This study has launched a concept to measure real time two-dimensional temperature distribution non-invasively by a combination of electrical capacitance tomography (ECT) technique and a permittivity-temperature equation for plastic pellets. The concept has two steps which are the relative permittivity calculation from the measured capacitance among the many electrodes by ECT technique, and the temperature distribution calculation from the relative permittivity distribution by permittivity-temperature equation. ECT sensor with 12-electrode is designed to measure and visualize the cross sectional temperature distribution during polymethyl methacrylate (PMMA) pellets cooling process. The images of the normalized relative permittivity distribution are successfully reconstructed at every time step during the process. The images indicate that the normalized relative permittivity of PMMA pellets is decreased as the temperature is decreased.


Sign in / Sign up

Export Citation Format

Share Document