Schedulability Analysis for Real Time On-Chip Communication with Wormhole Switching

Author(s):  
Zheng Shi ◽  
Alan Burns ◽  
Leandro Soares Indrusiak

In this paper, the authors discuss a real-time on-chip communication service with a priority-based wormhole switching policy. The authors present a novel off-line schedulability analysis approach, worst case network latency analysis. By evaluating diverse inter-relationships and service attributes among the traffic flows, this approach can predict the packet network latency for all practical situations. The simulation results provide evidence that communication latency calculated using the real time analysis approach is safe, closely matching the figures obtained from simulation.

Author(s):  
Zheng Shi ◽  
Alan Burns ◽  
Leandro Soares Indrusiak

In this paper, the authors discuss a real-time on-chip communication service with a priority-based wormhole switching policy. The authors present a novel off-line schedulability analysis approach, worst case network latency analysis. By evaluating diverse inter-relationships and service attributes among the traffic flows, this approach can predict the packet network latency for all practical situations. The simulation results provide evidence that communication latency calculated using the real time analysis approach is safe, closely matching the figures obtained from simulation.


2011 ◽  
Vol 8 (3) ◽  
pp. 40-43 ◽  
Author(s):  
Rodrigo Santos ◽  
Javier Orozco ◽  
Sergio F. Ochoa

Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2020 ◽  
Vol 67 (4) ◽  
pp. 1197-1205 ◽  
Author(s):  
Yuki Totani ◽  
Susumu Kotani ◽  
Kei Odai ◽  
Etsuro Ito ◽  
Manabu Sakakibara

2021 ◽  
Vol 2021 (4) ◽  
pp. 7-16
Author(s):  
Sivaraman Eswaran ◽  
Aruna Srinivasan ◽  
Prasad Honnavalli

Sign in / Sign up

Export Citation Format

Share Document