A Full Review of Attacks and Countermeasures in Wireless Sensor Networks

2012 ◽  
Vol 6 (4) ◽  
pp. 1-39
Author(s):  
Pejman Niksaz ◽  
Mohammad Javad Kargar

Wireless Sensor Networks (WSNs) have been recognized for their utility in a variety of different fields including military sensing and tracking, environmental monitoring, patient monitoring and tracking smart environments. The more scientists try to develop further cost and energy efficient computing devices and algorithms for WSNs, the more challenging it becomes to fit the security of WSNs into such a constrained environment. Thus, familiarity with the security aspects of WSNs is essential before designing WSN systems. In order to provide effective integrity, confidentiality, and authentication during communication, the need for additional security measures in WSNs emerges. In this paper, the authors review the security requirements for WSNs, the different kinds of possible attacks, and security mechanisms used to overcome these attacks. The authors also present some statistical data for such attacks in WSN and some tables that indicate a comparison between different security mechanisms.

2018 ◽  
Vol 14 (3) ◽  
pp. 155014771876464 ◽  
Author(s):  
Ruwaida M Zuhairy ◽  
Mohammed GH Al Zamil

Wireless sensor networks have become integral components of modern and smart environments. The main challenge for such important data-acquisition tools is the limited amount of available energy. In integrated networks in which cloud systems act as a self-regulatory controller, distributing the computational load among available partitions with rich energy will positively influence the lifetime of the whole network. This article investigates the application of a modified version of multinomial logistic regression model that incorporates spatiotemporal aspects of data collected from smart environments. The contribution of this research is to propose an energy-efficient load balancing strategy based on the proposed prediction model for the purpose of enhancing the lifetime of wireless infrastructure. Our proposed algorithm grows linearly in terms of time complexity. Extensive experiments have been performed to measure the prediction error rate and the energy consumption. The results showed that the proposed model significantly reduces the error rate and distinctly maximizes the lifetime of wireless sensor networks.


Author(s):  
Muneer Bani Yassein ◽  
Yaser Khamayseh ◽  
Ismail Hmeidi ◽  
Ahmed Al-Dubai ◽  
Mohammed Al-Maolegi

Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Author(s):  
Vo Que Son ◽  
Do Tan A

Sensing, distributed computation and wireless communication are the essential building components of a Cyber-Physical System (CPS). Having many advantages such as mobility, low power, multi-hop routing, low latency, self-administration, utonomous data acquisition, and fault tolerance, Wireless Sensor Networks (WSNs) have gone beyond the scope of monitoring the environment and can be a way to support CPS. This paper presents the design, deployment, and empirical study of an eHealth system, which can remotely monitor vital signs from patients such as body temperature, blood pressure, SPO2, and heart rate. The primary contribution of this paper is the measurements of the proposed eHealth device that assesses the feasibility of WSNs for patient monitoring in hospitals in two aspects of communication and clinical sensing. Moreover, both simulation and experiment are used to investigate the performance of the design in many aspects such as networking reliability, sensing reliability, or end-to-end delay. The results show that the network achieved high reliability - nearly 97% while the sensing reliability of the vital signs can be obtained at approximately 98%. This indicates the feasibility and promise of using WSNs for continuous patient monitoring and clinical worsening detection in general hospital units.


Sign in / Sign up

Export Citation Format

Share Document