Comparison of Feature Vectors in Keystroke Dynamics

2012 ◽  
Vol 3 (4) ◽  
pp. 59-76 ◽  
Author(s):  
Paulo H. Pisani ◽  
Ana C. Lorena

A number of current applications require algorithms able to extract a model from one-class data and classify unseen data as self or non-self in a novelty detection scenario, such as spam identification and intrusion detection. In this paper the authors focus on keystroke dynamics, which analyses the user typing rhythm to improve the reliability of user authentication process. However, several different features may be extracted from the typing data, making it difficult to define the feature vector. This problem is even more critical in a novelty detection scenario, when data from the negative class is not available. Based on a keystroke dynamics review, this work evaluated the most used features and evaluated which ones are more significant to differentiate a user from another using keystroke dynamics. In order to perform this evaluation, the authors tested the impact on two benchmark databases applying bio-inspired algorithms based on neural networks and artificial immune systems.

2014 ◽  
Vol 64 (1) ◽  
pp. 47-63 ◽  
Author(s):  
Miraç Eryiğit

This study aims at the development of an optimization model based on artificial immune systems (AIS) to minimize cost designs of water distribution networks (WDNs). Clonal selection algorithm (Clonalg), a class of AIS, was used as an optimization technique in the model, and its mutation operation was modified to increase the diversity (search capability). EPANET, a widely known WDN simulator, was used in conjunction with the proposed model. The model was applied to four WDNs of Two-loop, Hanoi, Go Yang, New York City, and the results obtained were compared with other heuristic and mathematical optimization models in the related literature, such as harmony search, genetic algorithm, immune algorithm, shuffled complex evolution, differential evolution, and non-linear programming-Lagrangian algorithm. Furthermore, the modified Clonalg was compared with the classic Clonalg in order to demonstrate the impact of the modification on the diversity. The proposed model appeared to be promising in terms of cost designs of WDNs.


2021 ◽  
Author(s):  
Shafagat Mahmudova

Abstract This study provides information on artificial immune systems. The artificial immune system is an adaptive computational system that uses models, principles, mechanisms and functions to describe and solve the problems in theoretical immunology. Its application in various fields of science is explored. The theory of natural immune systems and the key features and algorithms of artificial immune system are analyzed. The advantages and disadvantages of protection systems based on artificial immune systems are shown. The methods for malicious software detection are studied. Some works in the field of artificial immune systems are analyzed, and the problems to be solved are identified. A new algorithm is developed for the application of Bayesian method in software using artificial immune systems, and experiments are implemented. The results of the experiment are estimated to be good. The advantages and disadvantages of AIS were shown. To eliminate the disadvantages, perfect AISs should be developed to enable the software more efficient and effective.


2007 ◽  
Vol 19 (4) ◽  
pp. 647-647
Author(s):  
Xiao-Zhi Gao ◽  
Mo-Yuen Chow ◽  
David Pelta ◽  
Jon Timmis

Sign in / Sign up

Export Citation Format

Share Document