Kinematic Modeling and Error Analysis for a 3DOF Parallel-Link Coordinate Measuring Machine

Author(s):  
De Jun Liu ◽  
Hua Qing Liang ◽  
Hong Dong Yin ◽  
Bu Ren Qian
2006 ◽  
Vol 532-533 ◽  
pp. 313-316 ◽  
Author(s):  
De Jun Liu ◽  
Hua Qing Liang ◽  
Hong Dong Yin ◽  
Bu Ren Qian

First, the forward kinematic model, the inverse kinematic model and the error model of a kind of coordinate measuring machine (CMM) using 3-DOF parallel-link mechanism are established based on the spatial mechanics theory and the total differential method, and the error model is verified by computer simulation. Then, the influence of structural parameter errors on probe position errors is systematically considered. This research provides an essential theoretical basis for increasing the measuring accuracy of the parallel-link coordinate measuring machine. It is of particular importance to develop the prototype of the new measuring equipment.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guanbin Gao ◽  
Hongwei Zhang ◽  
Hongjun San ◽  
Xing Wu ◽  
Wen Wang

Articulated arm coordinate measuring machine (AACMM) is a specific robotic structural instrument, which uses D-H method for the purpose of kinematic modeling and error compensation. However, it is difficult for the existing error compensation models to describe various factors, which affects the accuracy of AACMM. In this paper, a modeling and error compensation method for AACMM is proposed based on BP Neural Networks. According to the available measurements, the poses of the AACMM are used as the input, and the coordinates of the probe are used as the output of neural network. To avoid tedious training and improve the training efficiency and prediction accuracy, a data acquisition strategy is developed according to the actual measurement behavior in the joint space. A neural network model is proposed and analyzed by using the data generated via Monte-Carlo method in simulations. The structure and parameter settings of neural network are optimized to improve the prediction accuracy and training speed. Experimental studies have been conducted to verify the proposed algorithm with neural network compensation, which shows that 97% error of the AACMM can be eliminated after compensation. These experimental results have revealed the effectiveness of the proposed modeling and compensation method for AACMM.


Sign in / Sign up

Export Citation Format

Share Document