scholarly journals Modeling and Error Compensation of Robotic Articulated Arm Coordinate Measuring Machines Using BP Neural Network

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guanbin Gao ◽  
Hongwei Zhang ◽  
Hongjun San ◽  
Xing Wu ◽  
Wen Wang

Articulated arm coordinate measuring machine (AACMM) is a specific robotic structural instrument, which uses D-H method for the purpose of kinematic modeling and error compensation. However, it is difficult for the existing error compensation models to describe various factors, which affects the accuracy of AACMM. In this paper, a modeling and error compensation method for AACMM is proposed based on BP Neural Networks. According to the available measurements, the poses of the AACMM are used as the input, and the coordinates of the probe are used as the output of neural network. To avoid tedious training and improve the training efficiency and prediction accuracy, a data acquisition strategy is developed according to the actual measurement behavior in the joint space. A neural network model is proposed and analyzed by using the data generated via Monte-Carlo method in simulations. The structure and parameter settings of neural network are optimized to improve the prediction accuracy and training speed. Experimental studies have been conducted to verify the proposed algorithm with neural network compensation, which shows that 97% error of the AACMM can be eliminated after compensation. These experimental results have revealed the effectiveness of the proposed modeling and compensation method for AACMM.

Author(s):  
Daocheng Yuan ◽  
Xin Tao ◽  
Caijun Xie ◽  
Huiying Zhao ◽  
Dongxu Ren ◽  
...  

Error compensation technology is used for improving accuracy and reducing costs. Dynamic error compensation techniques of coordinate measuring machine (CMM) are still under study; the major problem is a lack of suitable models, which would be able to correctly and simply relate the dynamic errors with the structural and operational parameters. To avoid the complexity of local dynamic deformation measurement and modeling, a comprehensive calibration method is employed. Experimental research reveals specific qualities of dynamic Abbe errors; the results exceed the scope of ISO 10360-2 calibration method, showing the ISO 10360-2 dynamic error evaluation deficiencies. For calibrating the dynamic Abbe errors, the differential measurement method is presented based on the measurements of the internal and external dimensions. Referring probe tip radius correction, the dynamic Abbe errors compensation method is proposed for CMM end-users and is easy to use.


2006 ◽  
Vol 532-533 ◽  
pp. 313-316 ◽  
Author(s):  
De Jun Liu ◽  
Hua Qing Liang ◽  
Hong Dong Yin ◽  
Bu Ren Qian

First, the forward kinematic model, the inverse kinematic model and the error model of a kind of coordinate measuring machine (CMM) using 3-DOF parallel-link mechanism are established based on the spatial mechanics theory and the total differential method, and the error model is verified by computer simulation. Then, the influence of structural parameter errors on probe position errors is systematically considered. This research provides an essential theoretical basis for increasing the measuring accuracy of the parallel-link coordinate measuring machine. It is of particular importance to develop the prototype of the new measuring equipment.


2011 ◽  
Vol 105-107 ◽  
pp. 1899-1902 ◽  
Author(s):  
Xiao Wei Zhang ◽  
Xing Hua Li ◽  
Bo Chen

In this paper, the mathematical model with errors for parallel double-joint coordinate measuring machine (CMM) was proposed. The main factor of the impact of circular grating measurement error--radial install eccentric error--was analyzed. The error was measured and the data obtained from measurement was used to curve fitting and form the error compensation formula. Experiments show that the method of error compensation has good usability and accuracy.


Sign in / Sign up

Export Citation Format

Share Document