Thermal Fatigue Characteristics of Heat-Resisting Stainless Steel for Automotive Exhaust

2007 ◽  
pp. 4944-4949
Author(s):  
Tae Kwon Ha ◽  
Hwan Jin Sung
2007 ◽  
Vol 539-543 ◽  
pp. 4944-4949 ◽  
Author(s):  
Tae Kwon Ha ◽  
Hwan Jin Sung

Thermal fatigue is a complex phenomenon encountered in materials exposed to cyclically varying temperatures in the presence or absence of external load. Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require immediate investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 304 and 429EM stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Thermal fatigue property of STS 304 was superior to that of STS 429EM. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property.


Alloy Digest ◽  
2007 ◽  
Vol 56 (4) ◽  

Abstract AK Steel 409 Ultra Form was created for applications needing oxidation or corrosion protection beyond the capability of carbon steel and some coated steels. AK Steel 409 Ultra Form is more formable than standard Type 409 stainless steel and is particularly suitable for parts requiring more complex shapes and improved weldability. Examples of applications include automotive exhaust tubing and stampings. This datasheet provides information on physical properties, hardness, elasticity, and tensile properties as well as deformation. It also includes information on high temperature performance as well as forming and joining. Filing Code: SS-990. Producer or source: AK Steel, Butler Operations.


Author(s):  
Huan Jin ◽  
Wu Yu ◽  
Feng Long ◽  
Min Yu ◽  
Qiyang Han ◽  
...  

The design and R&D for ITER In-Vessel Coils (IVCs) is being deployed. The concerned issue of “Edge Localized Modes” (ELMs) and “Vertical Stabilization” (VS) of the ITER plasma can be addressed by the implemented IVCs. The ELM and VS coils will be installed in the vessel just behind the blanket shield modules to reach the requirement of keeping strong coupling with the plasma. The 59mm Stainless Steel Jacketed Mineral Insulated Conductor (SSMIC) using MgO as the insulation is being designed for the IVCs to resist the special challenges, including the nuclear radiation, high temperature, electromagnetic and thermal fatigue. It is necessary to take the mechanical performances of the SSMIC and the feasibility of fabrication techniques into consideration of the R&D program. The mechanical performances of the SSMIC close to the actual work conditions, including the three point bend modulus, three point bend cyclical performance and the cyclical performance with a U-bend sample of the SSMIC prototypes have been investigated and the results are presented in this paper.


Author(s):  
Pauline Bouin ◽  
Antoine Fissolo ◽  
Ce´dric Gourdin

This paper covers work carried out by the French Atomic Energy Commission (CEA) to investigate on mechanisms leading to cracking of piping as a result of thermal loading existing in flow mixing zones. The main purpose of this work is to analyse, with a new experiment and its numerical interpretation, and to understand the mechanism of propagation of cracks in such components. To address this issue, a new specimen has been developed on the basis of the Fat3D experiment. This thermal fatigue test consists in heating a 304L steel pre-cracked tube while cyclically injecting ambient water onto its inner surface. The tube is regularly removed from the furnace for a crack characterisation. Finally, the crack growth is evaluated from the crack length differences between two stops. In parallel, a finite element analysis is developed using the finite element Cast3M code. A pipe with a semi-elliptical crack on its inner surface is modelled. A cyclic thermal loading is imposed on the tube. This loading is in agreement with experimental data. The crack propagates through the thickness. A prediction of the velocity of the crack is finally assessed using a Paris’ law type criteria. Finally, this combined experimental and numerical work on 304L austenitic stainless steel pipes will enable to improve existing methods to accurately predict the crack growth under cyclic thermal loadings in austenitic stainless steel pipe at the design stage.


Sign in / Sign up

Export Citation Format

Share Document