Application of Time-Temperature-Stress Superposition Principle to Nonlinear Creep of Poly(methyl methacrylate)

Author(s):  
Wen Bo Luo ◽  
Chu Hong Wang ◽  
Rong Guo Zhao
2007 ◽  
Vol 340-341 ◽  
pp. 1091-1096 ◽  
Author(s):  
Wen Bo Luo ◽  
Chu Hong Wang ◽  
Rong Guo Zhao

The uniaxial tensile creep of a commercial grade Poly(methyl methacrylate) was measured for 4000 seconds under various temperatures and stress levels ranging from 14 oC to 26 oC and 6 MPa to 32 MPa. The resultant creep compliance curves depart from each other for stresses beyond a critical value which varies with temperature, indicating nonlinear viscoelastic behavior. The time-temperature-stress superposition principle (TTSSP) was used to construct a smooth master compliance curve with a much longer time-scale interval from the short-term tests at higher stresses and temperatures. It is shown that the master curve covers a period of over 290 days, which is nearly 3.9 decades longer than the test duration. Moreover, it is verified that the time-temperature shift factors are dependent on stresses at which the shifts are applied, and that the time-stress shift factors are dependent on reference temperatures.


2007 ◽  
Vol 353-358 ◽  
pp. 1386-1389 ◽  
Author(s):  
Rong Guo Zhao ◽  
Wen Bo Luo ◽  
Chu Hong Wang ◽  
Xin Tang

Temperature induced change, and stress induced change as well, in intrinsic timescale were investigated by nonlinear creep tests on poly(methyl methacrylate). With four different experimental temperatures, from 14 to 26 degrees centigrade, time-dependent axial elongations of the specimen were measured at seven different stress levels, from 14 MPa to 30 MPa, and modeled according to the concept of time-temperature-stress equivalence. The test duration was only 4000 seconds. The corresponding temperature shift factors, stress shift factors and temperature-stress shift factors were obtained according to the time-temperature superposition principle (TTSP), the time-stress superposition principle (TSSP) and the time-temperature-stress superposition principle (TTSSP). The master creep compliance curve up to about two-year at a reference temperature 14 degrees centigrade and a reference stress 14 MPa was constructed by shifting the creep curves horizontally along the logarithmic time axis using shift factors. It is shown that TTSSP provides an effective accelerated test technique in the laboratory, the results obtained from a short-term creep test of PMMA specimen at high temperature and stress level can be used to construct the master creep compliance curve for prediction of the long-term mechanical properties at relatively lower temperature and stress level.


2012 ◽  
Vol 602-604 ◽  
pp. 681-684
Author(s):  
Yong Hua Li ◽  
Cheng Kai Jiang

A new accelerated characterization model for creep performances was briefly introduced first, which considers both the effects of temperature and stress level, named time-temperature- stress superposition principle (TTSSP). TTSSP assumes that the influence of stress level on the intrinsic time is similar to that of temperature for the creep behavior, as well as damage and physical aging. The creep curves at different state can be shifted into a master curve at reference state using TTSSP. Then the long-term creep behavior of viscoelastic materials at lower temperature and/or stress level can be predicted from the short-term ones. Finally, TTSSP was used to investigate the nonlinear creep behavior of high-density polyethylene (HDPE). It was shown that the long-term creep behavior of HDPE can be predicted successfully.


2019 ◽  
Vol 21 ◽  
pp. 100710
Author(s):  
Chuhong Wang ◽  
Wenbo Luo ◽  
Xiu Liu ◽  
Xin Chen ◽  
Lei Jiang ◽  
...  

2007 ◽  
Vol 561-565 ◽  
pp. 2041-2044 ◽  
Author(s):  
Wen Bo Luo ◽  
Xin Tang ◽  
Rong Guo Zhao ◽  
Jiang Hua Tan ◽  
Yoshihiro Tomita

In this work, the physical aging and its effect on nonlinear creep behavior of poly(methyl methacrylate) are presented. After annealing above Tg to release the previous thermal and stress history, the samples were quenched to 60oC, aged for various times, and were then tested at three different stress levels (22MPa, 26MPa and 30MPa) at room temperature of 27oC. At each stress level, the creep strain was converted to compliance and measured as a function of test time and aging time. The test results show that higher stress accelerates creep rate of the material while physical aging plays a reverse role. The time-aging time superposition is applicable to build a master creep compliance curve at each stress level, and it is demonstrated that the shift rate deceases with increasing stress. Moreover, based on the time-stress superposition principle, a unified master curve was constructed by further shifting the sub-master curves at 30MPa and 26 MPa to a reference stress level of 22MPa.


2015 ◽  
Vol 55 (10) ◽  
pp. 2215-2221 ◽  
Author(s):  
Chengkai Jiang ◽  
Han Jiang ◽  
Zhongmeng Zhu ◽  
Jianwei Zhang ◽  
Shaoyun Guo ◽  
...  

2006 ◽  
Vol 324-325 ◽  
pp. 731-734 ◽  
Author(s):  
Rong Guo Zhao ◽  
Wen Bo Luo ◽  
Chu Hong Wang ◽  
Xin Tang

The mechanical behaviors were investigated by nonlinear creep tests of poly(methyl methacrylate) under different temperatures. The test duration was 4000 seconds. The corresponding temperature shift factors, stress shift factors and temperature-stress shift factors were obtained according to time-temperature superposition principle, the time-stress superposition principle and the time-temperature-stress superposition principle (TTSSP). The master creep compliance curve up to about 1-month at a reference temperature 22 degrees centigrade and a reference stress 14 MPa was constructed, and the effect of stress-induced damage evolution on the long-term creep behavior of polymeric material was accounted. It was shown that TTSSP provides an effective accelerated test technique in the laboratory, the results obtained from a short-term creep test of poly(methyl methacrylate) specimen at high temperature and stress level can be used to construct the master creep compliance curve for prediction of the long-term mechanical properties at relatively lower temperature and stress level, and the master creep compliance curve with damage considered can be applied to accurately characterize the long-term creep behavior of nonlinear viscoelastic polymer.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 830
Author(s):  
Alireza Foroozani Behbahani ◽  
Vagelis Harmandaris

Segmental dynamics in unentangled isotactic, syndiotactic, and atactic poly(methyl methacrylate) (i-, a-, and s-PMMA) melts confined between pristine graphene, reduced graphene oxide, RGO, or graphene oxide, GO, sheets is studied at various temperatures, well above glass transition temperature, via atomistic molecular dynamics simulations. The model RGO and GO sheets have different degrees of oxidization. The segmental dynamics is studied through the analysis of backbone torsional motions. In the vicinity of the model nanosheets (distances less than ≈2 nm), the dynamics slows down; the effect becomes significantly stronger with increasing the concentration of the surface functional groups, and hence increasing polymer/surface specific interactions. Upon decreasing temperature, the ratios of the interfacial segmental relaxation times to the respective bulk relaxation times increase, revealing the stronger temperature dependence of the interfacial segmental dynamics relative to the bulk dynamics. This heterogeneity in temperature dependence leads to the shortcoming of the time-temperature superposition principle for describing the segmental dynamics of the model confined melts. The alteration of the segmental dynamics at different distances, d, from the surfaces is described by a temperature shift, ΔTseg(d) (roughly speaking, shift of a characteristic temperature). Next, to a given nanosheet, i-PMMA has a larger value of ΔTseg than a-PMMA and s-PMMA. This trend correlates with the better interfacial packing and longer trains of i-PMMA chains. The backbone torsional autocorrelation functions are shown in the frequency domain and are qualitatively compared to the experimental dielectric loss spectra for the segmental α-relaxation in polymer nanocomposites. The εT″(f) (analogous of dielectric loss, ε″(f), for torsional motion) curves of the model confined melts are broader (toward lower frequencies) and have lower amplitudes relative to the corresponding bulk curves; however, the peak frequencies of the εT″(f) curves are only slightly affected.


Sign in / Sign up

Export Citation Format

Share Document