stress superposition
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 192
Author(s):  
Tao Peng ◽  
Qiuhong Lin ◽  
Bingyan Li ◽  
Ani Luo ◽  
Qiang Cong ◽  
...  

In this paper, the stress superposition method (SSM) is proposed to solve the stress distribution of regular polygon membranes. The stress-solving coefficient and the calculation formula of arbitrary point stress of regular polygon membrane are derived. The accuracy of the SSM for calculating stresses in regular polygonal membranes is verified by comparing the calculation results of the SSM with the finite element simulation results. This article is the first to propose a method to investigate the response of the arch height of the membrane curved edge to the membrane’s mechanical properties while keeping the effective area constant. It is found that the equivalent stress and the second principal stress at the midpoint of the membrane curved edge are effectively increased with the increase of the arch height of the curved edge. The second principal stress at the edge region of the membrane is relatively small, leading to the occurrence of wrinkles. When the stress at the midpoint of the curved edge is equal to that at the center of the membrane, the membrane plane attains the maximum stiffness and reduces the possibility of wrinkling at the edge.


2021 ◽  
Author(s):  
Dongdong Chen ◽  
Yiyi Wu ◽  
Shengrong Xie ◽  
Fangfang Guo ◽  
Fulian He ◽  
...  

Abstract Close-distance coal seams are widely distributed in China, and there is a problem of stopping mining in a large number of working faces. Taking Yanzishan mine as the engineering background, the mined-out area and the remaining end-mining coal pillar of No.4 coal seam (upper coal seam) mined in advance caused strong interference to the stopping mining of N316 working face of No.3 coal seam under it. Through field observation, laboratory experiment, and support data collection, the mechanical parameters of coal and rock mass and periodic weighting condition of the working face were mastered, and numerical simulation and similar model experiments were carried out. Three positional relationships between the stopping position of the underlying N316 working face and the upper stopping line were obtained: “externally staggered with the upper stopping line” (ESUL), “overlapped with upper stopping line” (OUL), and “internally staggered with the upper stop line” (ISUL, ISUL-SD for shorter internal staggered distances, ISUL-LD for longer ones). The formation and evolution of the stress arch structure of ESUL → OUL → ISUL-SD → ISUL-LD are obtained from the analysis: ① ESUL: there is a double stress arch structure of goaf side and end-mining coal pillar side in the overburden and stress superposition appears in the middle arch foot (stopping mining place). ② OUL: it evolved into a single arch structure of goaf-solid coal, and the stress at the stop of mining was relatively minimum. ③ ISUL-SD: it is still a single arch structure, and the stress at the stop of mining is still small. ④ ISUL-LD: the double stress arch is regenerated and stress superposition occurs at the front arch foot (stopping mining place). At the same time, the morphological evolution process of stress arch is as follows: “front and back stress arches, superimposed with middle arch foot” → “front arch gradually decreases” → “front arch dies, and two arches merge into single arch” → “single arch gradually increases” → “two arches are regenerated, superimposed with front arch foot”. On-the-spot analysis from the combination of stress and overburden structure: ① ESUL: the stress concentration degree is the highest above the stopping space, and the overburden block in the large-scale caving zone directly acts on the support, which makes the stopping operation difficult. ② OUL: although the stress environment is the best, the overlying key blocks will have hidden dangers of overall rotation or sliding instability. ③ ISUL-SD: the stress environment is good, and the overlying rock can realize the stable structure of the cantilever plate (the internal staggered distance is less than the periodic weighting step), and the mining is stopped at this position to realize the safe and smooth withdrawal of the support. ④ ISUL-LD: it is basically consistent with stopping mining when single-layer coal is used but is limited by the limited length of the end-mining coal pillar. In addition, the self-digging retracement channel is designed to serve the whole retracement process, and the idea of time-sharing partition support for a large cross-section of mining stoppage and its corresponding scheme is put forward according to the retracement process. Through the simulation of prestressed field and field practice, the roof overlying rock structure is stable during the whole retracement period, thus realizing the safe and smooth mining stoppage and retracement of the working face.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hui-Wu Jin ◽  
Zeng-Qiang Yang

To study the reasonable layout of upper protective layer for the prevention rock burst under coal seam group with close quarters conditions, a panel 3203 that belong to Zhongxing Colliery is taken as a typical engineering background. By means of on-site survey, theoretical analysis, numerical simulation, and on-site industrial applications, the reasonable layout of upper protective layer for prevention rock burst is studied. The results show that the overall stress environment of the floor under gob of upper protective layer is good, and the overall stress environment of the floor under the upper side of gob is also good, but the overall stress environment of the floor under the lower side of gob is bad. According to numerical simulation results, an L-shaped stress superposition area is formed in the lower end of panel 3203 under the original layout scheme conditions, and the maximum stress concentration coefficient is about 2.8 in stage I and 4.0 in stage II. A new stress superposition area is formed at the middle to lower end part of advance mining face of panel 3203 for the stage II under the optimal layout scheme conditions, and the maximum stress concentration coefficient is about 2.4; the original L-shaped stress superposition area is gone due the transfer and release of stress, and the optimal layout scheme has a very significant effect on the prevention and control of the subsequent rock burst accidents; the monitoring results of working resistance of hydraulic supports and surrounding rock deformation indicate that the overall pressure relief of the surrounding rock in advanced segment of 3205 tailgate can be effectively realized. The study conclusions provide theoretical foundation and a new guidance for preventing rock burst with similar engineering geological conditions.


2021 ◽  
Vol 883 ◽  
pp. 143-150
Author(s):  
Jonas Lehmann ◽  
Hui Chen ◽  
Moritz Kruse ◽  
Noomane Ben Khalifa

The fatigue strength and product life of the components can be improved by introducing compressive residual stresses using mechanical surface treatment. Appling stress superposition is an option to be used in metal forming to reduce the process force. In this work experimental investigations to analyze the influence of stress superposition on residual stresses of sheet metal parts by a slide hardening process were carried out. The flat and elastically pre-bended specimens (i.e. stress-superimposed specimen) were processed with a slide diamond tool under different loading forces. The residual stress generated through the thickness of the sheet metal was similar for the flat and the pre-bended specimens. The superimposed stress by elastic bending of the sheet metal led to higher compressive residual stress compared to the flat specimen under the same loading force. Nevertheless, the contour of the pre-bended specimen showed more bulking compared to the flat specimen. The mechanical characteristics determined by hardness measurements showed no significant improvement when applying stress superposition.


Author(s):  
Fabian Maaß ◽  
Marlon Hahn ◽  
A. Erman Tekkaya

AbstractProcess-induced residual stresses significantly influence the mechanical properties of a formed component. A polymer pad is used as a flexible die in two-point incremental forming to induce compressive residual stresses in the component during the forming process. Experimental and numerical results illustrate the influence of compressive stress superposition on the component properties. It is shown that the active support, using a geometry-independent polyurethane die, causes beneficial compressive residual stresses on the tool side compared to the tensile residual stresses induced by the single-point incremental forming process without such a supporting die.


2021 ◽  
Vol 1083 (1) ◽  
pp. 012014
Author(s):  
A Ya Al-Bukheiti ◽  
V V Ledenev ◽  
Ya V Savinov ◽  
O V Umnova ◽  
Yaya Keyta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document