Numerical Investigation on the Fracture Behaviors of Three-Dimensional Functionally Graded Materials

Author(s):  
Hong Jun Yu ◽  
Li Cheng Guo ◽  
Lin Zhi Wu
2007 ◽  
Vol 353-358 ◽  
pp. 1098-1101 ◽  
Author(s):  
Hong Jun Yu ◽  
Li Cheng Guo ◽  
Lin Zhi Wu

Functionally graded materials (FGMs) with continuous varying properties have absorbed great attention for the purpose of eliminating the mismatch of material properties which may result in cracking. In this paper, three-dimensional finite element method (3D FEM) based on nonhomogeneous elements is used to study the fracture behaviors of a 3D FGM plate. Since real material properties at Gaussian integration points are adopted during forming the element stiffness matrix, the nonhomogeneous material properties can be applied in each element. Moreover, 20-node singular elements are used around the crack front to deal with the singularity of stress fields at the crack front. By this way, the stress intensity factors (SIFs) can be calculated with high efficiency and accuracy. Therefore, compared with the general FEM using homogeneouos elements, the calculating efficiency and accuracy can be increased. Finally, parameter analysis is conducted. It is found that the material nonhomogeneity constant and the crack parameter have significant influences on the SIFs.


2017 ◽  
Vol 754 ◽  
pp. 145-148
Author(s):  
J. Li ◽  
C. Shi ◽  
Pi Hua Wen

The finite block method (FBM) is developed to determine stress intensity factors with orthotropic functionally graded materials under static and dynamic loads in this paper. The higher order derivative matrix for two and three dimensional problems can be constructed directly. For linear elastic fracture mechanics, the COD and J-integral techniques to determine the stress intensity factors are applied. Several examples are given and comparisons have been made with both analytical solutions and the finite element method in order to demonstrate the accuracy and convergence of the finite block method.


Sign in / Sign up

Export Citation Format

Share Document