Preparation and Properties of 2D Carbon Cloth Reinforced Ultra-High Temperature Ceramic Matrix Composites

Author(s):  
Yong Lian Zhou ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Qi Kun Wang ◽  
Chang Rui Zhang
2008 ◽  
Vol 368-372 ◽  
pp. 1050-1052 ◽  
Author(s):  
Yong Lian Zhou ◽  
Hai Feng Hu ◽  
Yu Di Zhang ◽  
Qi Kun Wang ◽  
Chang Rui Zhang

In this paper the preparation of carbon fiber reinforced ultra-high temperature ceramic matrix composites was reported. Polymer infiltration and pyrolysis process was used to prepare 2D C/TaC-SiC, C/NbC-SiC, and C/ZrC-SiC composites. The fracture strengths of all the samples were around 300MPa and toughness around 10MPa-m1/2. Standard oxyacetylene torch tests (>3000°C, 30s) showed that the minimum ablative rate of 2D C/SiC-ZrC was as low as 0.026 mm/s, much smaller than that of 2D C/SiC composites (0.088mm/s).


2021 ◽  
Author(s):  
Mainak Saha

While descending through different layers of atmosphere with tremendously high velocities, hypersonic re-entry nosecones fabricated using ultra-high temperature ceramic matrix composites (UHTCMCs) are subjected to repeated thermal shocks. This necessitates extensive investigations on the cyclic oxidation behaviour of UHTCMCs at temperatures ranging from 1100°C to 1300°C (service temperature of the nosecones). To this end, the present work is aimed at investigating the cyclic oxidation behaviour of ZrB2 -20 vol.%MoSi2 (ZM20) UHTCMC (a very widely investigated ZM CMC) by carrying out cycles for 6h, at 1cycle/h and estimating oxidation kinetic law. This has been followed by extensive characterisation using X-Ray Diffraction (XRD) to indicate the phases formed during oxidation and Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), in order to determine the chemical composition of the oxides formed between 1100°C and 1300°C.


Sign in / Sign up

Export Citation Format

Share Document