ceramic matrix composite
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 138)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Vol 12 (1) ◽  
pp. 190
Author(s):  
Artem Glukharev ◽  
Oleg Glumov ◽  
Ivan Smirnov ◽  
Evgeniy Boltynjuk ◽  
Olga Kurapova ◽  
...  

Fully stabilized zirconia/graphene composites are very promising advanced structural materials having mixed ion–electron conductivity for energy storage and energy conversion applications. The existing methods of the composite manufacturing have a number of disadvantages that limit their practical use. Thus, the search for new sintering methods is an actively developing area. In this work, we report for the first time the application of the SiC powder bed sintering technique for fully stabilized zirconia (YSZ) composite fabrication. The reduced graphene oxide (rGO) was used as a graphene derivative. As a result, well-formed ceramics with high density and crystallinity, the maximal microhardness of 13 GPa and the values of the ionic conductivity up to 10−2 S/cm at 650 °C was obtained. The effects of the sintering conditions and rGO concentration on the microstructure and conductivities of ceramics are discussed in detail. The suggested powder bed sintering technique in a layered graphite/SiC/graphite powder bed allowed well-formed dense YSZ/rGO ceramics fabrication and can become a suitable alternative to existing methods for various oxide ceramic matrix composite fabrication: both conventional sintering and non-equilibrium (SPS, flash sintering) approaches.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012039
Author(s):  
Geng Hou ◽  
De-Guang Shang ◽  
Lin-Xuan Zuo ◽  
Lin-Feng Qu ◽  
Ming Xia ◽  
...  

Abstract Ceramic matrix composite is a kind of mechanical engineering material with excellent high temperature mechanical properties, which has been widely used in aircraft propulsion system and thermal protection system. Therefore, it is of great significance to study the fatigue failure of needled ceramic matrix composite. In this investigation, based on the realtime acoustic emission (AE) monitoring of needled C/SiC ceramic matrix composite, the characteristics of AE energy during the fatigue damage process were obtained. In addition, considering the emission coefficient of AE energy and the threshold value of AE energy in single cycle, a method for judging the imminent fatigue failure of needled composite was proposed. By comparing the cycle of failure warning by proposed method with the experimental fatigue life, the proposed method can provide fatigue failure warning near and before fatigue failure.


2021 ◽  
Vol 1047 ◽  
pp. 57-61
Author(s):  
Xiao Zhou Li ◽  
Bin Dai ◽  
Jin Kai Xu ◽  
Le Tong ◽  
Mao Xun Wang ◽  
...  

With the development of advanced manufacturing technology, ceramic matrix composite materials, a typically hard and brittle material, have been widely used in high-tech fields such as aerospace manufacturing. Due to the anisotropy of materials, the quality of conventional processing workpieces is poor, and the processing accuracy is difficult to guarantee. In this experiment, ceramic matrix composite materials are machined by ultrasonic vibration grinding with the CBN grinding rods. The influence of amplitude on the grinding force and the surface quality of the workpiece in the grinding process are analyzed by a series of experiments on ceramic matrix composites. The results show that, compared with the conventional grinding process, in the ultrasonic vibration-assisted grinding process, the grinding force is reduced by about 60%, and the surface quality is also improved significantly,the surface roughness Sa is reduced by about 25%.


2021 ◽  
Author(s):  
Mainak Saha

While descending through different layers of atmosphere with tremendously high velocities, hypersonic re-entry nosecones fabricated using ultra-high temperature ceramic matrix composites (UHTCMCs) are subjected to repeated thermal shocks. This necessitates extensive investigations on the cyclic oxidation behaviour of UHTCMCs at temperatures ranging from 1100°C to 1300°C (service temperature of the nosecones). To this end, the present work is aimed at investigating the cyclic oxidation behaviour of ZrB2 -20 vol.%MoSi2 (ZM20) UHTCMC (a very widely investigated ZM CMC) by carrying out cycles for 6h, at 1cycle/h and estimating oxidation kinetic law. This has been followed by extensive characterisation using X-Ray Diffraction (XRD) to indicate the phases formed during oxidation and Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), in order to determine the chemical composition of the oxides formed between 1100°C and 1300°C.


Sign in / Sign up

Export Citation Format

Share Document