Experimental Research on Technology of Ultrasonic Vibration Aided Electrical Discharge Machining (UEDM) in Gas

Author(s):  
Qin He Zhang ◽  
Jian Hua Zhang ◽  
Q.B. Zhang ◽  
Shu Peng Su
Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


2009 ◽  
Vol 626-627 ◽  
pp. 321-326
Author(s):  
Bao Xian Jia ◽  
D.S. Wang ◽  
Jing Zhe Guo

In order to obtain micro holes with high aspect ratio, a new technique of machining deep micro holes by combining EDM (Electrical Discharge Machining) with USM (Ultrasonic Machining) in inversion installing is researched. The workpiece is over the electrode. The ultrasonic vibration is affixed to the electrode. The workpiece and electrode are all immersed in working liquid. The debris generated by EDM is dropped out the hole from the gap between the electrode and the hole wall by the gravity and the pumping effect of ultrasonic vibration, so as to increasing the machining velocity and machined depth. The structural features of the machining device are described, and the exploratory experiment is carried out. The corresponding process relations are found out, which can provide references for further study of this technique. The micro holes with larger than 25 in aspect ratio are machined.


2002 ◽  
Vol 129 (1-3) ◽  
pp. 135-138 ◽  
Author(s):  
Q.H Zhang ◽  
J.H Zhang ◽  
J.X Deng ◽  
Y Qin ◽  
Z.W Niu

Sign in / Sign up

Export Citation Format

Share Document