In Situ FT-IR Studies on the Urethane Reaction Kinetics of 3-Methyl-1,3-Butanediol in Nitrogen-Contained Solvent

2012 ◽  
Vol 446-449 ◽  
pp. 1743-1746
Author(s):  
Peng Fei Yang
2012 ◽  
Vol 472-475 ◽  
pp. 2223-2226
Author(s):  
Peng Fei Yang

Phenyl isocyanate is used to react with 1,3-butanediol at different temperatures. Toluene is used as solvent and 1,4-diazabicyclo[2,2,2]octane is used as catalyst. In-situ FT-IR is used to monitor the reaction to work out rate constant, Arrhenius equation and Eyring equation. The urethane reaction has been found to be a second order reaction, and the rate constant seems different between initial stage and final stage. The activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) for the urethane reaction of primary hydroxyl group are calculated out, which are 26.4 kJ•mol-1, 23.6 kJ•mol-1and -186.6 J•mol-1•k-1, respectively. They are very useful to reveal the reaction mechanism.


2012 ◽  
Vol 450-451 ◽  
pp. 131-134
Author(s):  
Peng Fei Yang

Phenyl isocyanate is used to react with 1,2-propanediol in different temperatures. Toluene is used as solvent and triethylamine is used as catalyst. In-situ FT-IR is used to monitor the reaction to work out rate constant, Arrhenius equation and Eyring equation. The urethane reaction has been found to be a second order reaction, and the rate constant seems different between initial stage and final stage. The activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) for the urethane reaction are calculated out, which are 74.1 kJ•mol-1, 71.3 kJ•mol-1 and -30.5 J•mol-1•k-1, respectively. They are very useful to reveal the reaction mechanism.


2012 ◽  
Vol 446-449 ◽  
pp. 1743-1746
Author(s):  
Peng Fei Yang

Phenyl isocyanate is used to react with 3-methyl-1,3-butanediol at different temperatures. Dimethylformamide is used as solvent. In-situ FT-IR is used to monitor the reaction to work out rate constant, Arrhenius equation and Eyring equation. The urethane reaction has been found to be a second order reaction, and the rate constant seems different between initial stage and final stage. The activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) for the urethane reaction of tertiary hydroxyl group are calculated out, which are 75.2 kJ•mol-1, 72.4 kJ•mol-1and -44.8 J•mol-1•k-1, respectively. They are very useful to reveal the reaction mechanism.


2012 ◽  
Vol 472-475 ◽  
pp. 1911-1914
Author(s):  
Peng Fei Yang

Phenyl isocyanate is used to react with 1,3-butanediol at different temperatures. Dimethylformamide is used as solvent. In-situ FT-IR is used to monitor the reaction to work out rate constant, Arrhenius equation and Eyring equation. The urethane reaction has been found to be a second order reaction, and the rate constant seems different between initial stage and final stage. The activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) for the urethane reaction of primary hydroxyl group are calculated out, which are 90.9 kJ•mol-1, 88.2 kJ•mol-1and 20.2 J•mol-1•k-1, respectively. They are very useful to reveal the reaction mechanism.


1997 ◽  
Vol 280 (5-6) ◽  
pp. 469-474 ◽  
Author(s):  
Xing-Rong Zeng ◽  
Ke-Cheng Gong ◽  
Ke-Nan Weng ◽  
Wan-Sheng Xiao ◽  
Wen-Hong Gan ◽  
...  

ChemCatChem ◽  
2012 ◽  
Vol 4 (5) ◽  
pp. 624-627 ◽  
Author(s):  
Li Wang ◽  
Qin Xin ◽  
Yue Zhao ◽  
Ge Zhang ◽  
Jie Dong ◽  
...  
Keyword(s):  

2010 ◽  
Vol 71 (3) ◽  
pp. 323-328 ◽  
Author(s):  
Syed Arshad Hussain ◽  
Md N. Islam ◽  
D. Bhattacharjee

Sign in / Sign up

Export Citation Format

Share Document