Experimental Study on Seismic Behavior of Steel-Plate Reinforced Concrete Shear Wall with Rectangular CFST Columns

2012 ◽  
Vol 446-449 ◽  
pp. 370-377
Author(s):  
Jian Wei Zhang ◽  
Wan Lin Cao ◽  
Hong Ying Dong
2012 ◽  
Vol 446-449 ◽  
pp. 370-377
Author(s):  
Jian Wei Zhang ◽  
Wan Lin Cao ◽  
Hong Ying Dong

The steel-plate reinforced concrete shear wall with rectangular concrete filled steel tube (CFST) columns is a new kind of composite shear wall. In order to ascertain its seismic behavior and failure mechanism, four 1/5 scale specimens with the same shear span ratio 1.5, different thickness of the steel-plate and different axial force ratio, were tested under horizontal cyclic loading. The thickness of steel-plate in the walls is 2mm, 4mm, 4mm and 6mm, respectively. Based on the experiment, the load-bearing capacity, hysteretic characteristics, ductility, stiffness degradation, energy dissipation capacity and failure mode of the specimens were contrastively analyzed. And the effect of the ratio of height to sectional thickness of steel-plate and the value changes of axial force ratio on seismic behavior of the new shear wall was also analyzed. The result shows that the steel-plate reinforced concrete shear wall with rectangular CFST columns has good seismic performance and important engineering value.


2018 ◽  
Vol 27 (15) ◽  
pp. e1509 ◽  
Author(s):  
Yaohong Wang ◽  
Zeyu Gao ◽  
Qing Han ◽  
Lei Feng ◽  
Hao Su ◽  
...  

2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2021 ◽  
Vol 187 ◽  
pp. 106944
Author(s):  
Wenhui He ◽  
Yikun Wan ◽  
Yuyu Li ◽  
JinBin Bu ◽  
Jianliang Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document