Experimental study on seismic behavior of steel plate reinforced concrete composite shear wall

2018 ◽  
Vol 160 ◽  
pp. 281-292 ◽  
Author(s):  
Wei Wang ◽  
Yan Wang ◽  
Zheng Lu
2021 ◽  
Vol 187 ◽  
pp. 106944
Author(s):  
Wenhui He ◽  
Yikun Wan ◽  
Yuyu Li ◽  
JinBin Bu ◽  
Jianliang Deng ◽  
...  

2020 ◽  
Vol 23 (8) ◽  
pp. 1629-1643
Author(s):  
Zhi Zhou ◽  
Jiang Qian ◽  
Wei Huang

This article investigates the shear strength of steel plate reinforced concrete shear wall under cyclic loads. A nonlinear three-dimensional finite element model in ABAQUS was developed and validated against published experimental results. Then, a parametric study was conducted to evaluate the effects of the parameters on the lateral capacity of composite shear wall, including shear span ratio, concrete strength, axial load ratio, steel plate ratio and transverse reinforcement ratio of the web. Furthermore, a modified formula of shear strength of composite shear wall was proposed. Regression analyses were used to obtain the contribution coefficients of different parts from 720 finite element models. Finally, the shear strengths of specimens from published tests were compared with design strengths calculated using the proposed formula, American Institute of Steel Construction Provisions and Chinese Code. It was found that the Chinese Code well predicts the shear strength of composite shear wall of a steel plate ratio of less than 5%, while unsafely predicting that of a higher steel plate ratio. The American Institute of Steel Construction Provisions predictions are quite conservative because the contribution of the reinforced concrete is neglected. The modified formula safely predicts the shear strength of composite shear wall.


2012 ◽  
Vol 446-449 ◽  
pp. 370-377
Author(s):  
Jian Wei Zhang ◽  
Wan Lin Cao ◽  
Hong Ying Dong

The steel-plate reinforced concrete shear wall with rectangular concrete filled steel tube (CFST) columns is a new kind of composite shear wall. In order to ascertain its seismic behavior and failure mechanism, four 1/5 scale specimens with the same shear span ratio 1.5, different thickness of the steel-plate and different axial force ratio, were tested under horizontal cyclic loading. The thickness of steel-plate in the walls is 2mm, 4mm, 4mm and 6mm, respectively. Based on the experiment, the load-bearing capacity, hysteretic characteristics, ductility, stiffness degradation, energy dissipation capacity and failure mode of the specimens were contrastively analyzed. And the effect of the ratio of height to sectional thickness of steel-plate and the value changes of axial force ratio on seismic behavior of the new shear wall was also analyzed. The result shows that the steel-plate reinforced concrete shear wall with rectangular CFST columns has good seismic performance and important engineering value.


2014 ◽  
Vol 711 ◽  
pp. 418-421
Author(s):  
You Jia Zhang

In order to study the seismic performance of low shear-span ratio composite shear wall with steel plate reinforced concrete,three low shear-span ratio composite shear walls with steel plate reinforced concrete were tested.The deformation performance and failure modes were observed under low cyclic lateral loads with high axial compression ratio.Valuable results were obtained for the hysteretic curves,skeleton curves,ductility and energy dissipation capacity.The results indicate that the elastic stage, Specimen stiffness value is larger, and the stiffness change is basically the same; The specimen into the elastic-plastic stage, cracks have appeared in basic beam and early damage. The junction of steel concrete structure and reinforced concrete structure are prone to failure, which should improve the reinforced concrete shear stiffness in the design.


Sign in / Sign up

Export Citation Format

Share Document