scholarly journals A New Algorithm of Image Encryption Based on 3D Arnold Cat

2011 ◽  
Vol 1 ◽  
pp. 183-187 ◽  
Author(s):  
Tian Gong Pan ◽  
Da Yong Li

3D Arnold cat map can be applied in image encryption, and it has more security and better effect. However, its period is fixed. The original image will be returned to itself if iterating some times. On the basis of 3D Arnold cat map, it presented an algorithm of image encryption which separates the original image to many same blocks and no period. Simulation analysis shows that the encryption algorithm has characters of strong keys, better effect and fast.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xuncai Zhang ◽  
Lingfei Wang ◽  
Ying Niu ◽  
Guangzhao Cui ◽  
Shengtao Geng

In this paper, an image encryption algorithm based on the H-fractal and dynamic self-invertible matrix is proposed. The H-fractal diffusion encryption method is firstly used in this encryption algorithm. This method crosses the pixels at both ends of the H-fractal, and it can enrich the means of pixel diffusion. The encryption algorithm we propose uses the Lorenz hyperchaotic system to generate pseudorandom sequences for pixel location scrambling and self-invertible matrix construction to scramble and diffuse images. To link the cipher image with the original image, the initial values of the Lorenz hyperchaotic system are determined using the original image, and it can enhance the security of the encryption algorithm. The security analysis shows that this algorithm is easy to implement. It has a large key space and strong key sensitivity and can effectively resist plaintext attacks.


2020 ◽  
Vol 30 (04) ◽  
pp. 2050060 ◽  
Author(s):  
Cong Xu ◽  
Jingru Sun ◽  
Chunhua Wang

In this paper, we propose an image encryption algorithm based on random walk and two hyperchaotic systems. The random walk method is adopted to scramble the position of pixels within a block. Furthermore, the permutation operation between blocks is presented to enhance the scramble effect. Thus, high correlation among pixels of original image is broken by permutation. Moreover, the chosen plaintext attack is used to test the anti-attack ability of the proposed algorithm. By analyzing experimental results and comparing with other image encryption algorithms, we show that the proposed algorithm has better performance and higher security.


2020 ◽  
Vol 64 (4) ◽  
pp. 40413-1-40413-8
Author(s):  
Zhuang-hao Si ◽  
Wei Wei ◽  
Bi-song Li ◽  
Wei-jie Feng

Abstract To explore the DNA image encryption method based on the Logistic‐sine system and the fractional-order chaos stability theory, a fractional-order fuzzy differential equation is first introduced to construct a chaotic synchronization system. Then the green, blue, and red primary color matrix is established to design new DNA image encryption, and the encryption process is explained. Next, a data encryption algorithm and an advanced encryption algorithm are introduced to perform simulation experiments on the MATLAB 2014 software platform. It is found that the images encrypted by the new algorithm all exhibit striped snowflakes, and after decryption, it is almost the same as the original image. The histogram of the image encrypted by the new algorithm is flat, which is very different from the original image histogram. The average pixel change rate of the image encrypted by the new algorithm is 99.6267%, and the average change intensity reaches 33.5183%. The average information entropy of the image encrypted by the new algorithm is 7.9624, which is close to the upper limit of 8. The calculation time and occupied space of the new algorithm are less than those of the data encryption algorithm and the advanced encryption algorithm. This result shows that the DNA image encryption algorithm based on the Logistic‐sine system and the fractional-order chaos stability theory has excellent performance and can provide a certain theoretical basis for research in the field of digital image encryption.


2011 ◽  
Vol 317-319 ◽  
pp. 1537-1540 ◽  
Author(s):  
Tian Gong Pan ◽  
Da Yong Li

Arnold cat map is a classical transformation of image encryption, but it has some shortcomings such as short key quantities, small period and so on. On the basis of Arnold cat map, it presented an algorithm of image encryption based on 3D Arnold cat and chaotic map. Simulation experiments show that the encryption algorithm has characters of strong keys, better effect and fast.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


2019 ◽  
Vol 38 (3) ◽  
pp. 647-678 ◽  
Author(s):  
Ľuboš Ovseník ◽  
Ján Turán ◽  
Tomáš Huszaník ◽  
Jakub Oravec ◽  
Ondrej Kováč ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document