Influence of Limited Excavation under the Foundation of an Existing Church

2017 ◽  
Vol 21 ◽  
pp. 175-182
Author(s):  
Maria Solonaru ◽  
Mihai Budescu ◽  
Irina Lungu ◽  
Lucian Soveja

The objective of the present paper represents the optimization of the excavation dimensions within underpinning works. Stress variations within the structural walls of an existing masonry church have been observed and interpreted for different lengths of the excavation section, in order to optimize the section length and to not exceed the allowable deformation limits. In this respect, nonlinear static analyzes using finite element program ANSYS Workbench have been performed, considering soil-structure interaction, for limited excavations that take place underneath the existing stone masonry foundation, laying on a multi-layered soil.

2011 ◽  
Vol 255-260 ◽  
pp. 1167-1170
Author(s):  
Feng Miao ◽  
Wang Bo ◽  
Guan Ping

Based on scheme of Dalian gulf cross-sea bridge, in this paper, a 3-dimensional FE model for Self-anchored cable-stayed suspension bridge is established with finite element program and pile-soil-structure interaction is simulated by use of the equivalent embed fixation model. Based on the FE model, model analysis is carried out and the effects of pile-soil-structure interaction on dynamic behavior of long-span self-anchored cable-stayed suspension bridge are specially studied. The seismic response analysis result considering that pile-soil-structure interaction was compared with that of without considering such interaction. The analysis result show that interaction extend the nature period of structure, has the greatest impact to the first vibration mode; meanwhile, enlarged longitudinal displacement and moment of stiffening beam in middle of main span, longitudinal displacement on top of tower and axial force at bottom, but reduced the moment of tower at bottom. The research results provide some theoretical foundation to composite structure system.


2011 ◽  
Vol 63-64 ◽  
pp. 421-424
Author(s):  
Miao Feng ◽  
Guan Ping ◽  
Wang Bo

Based on scheme of Dalian gulf cross-sea bridge, in this paper, a 3-dimensional FE model for Self-anchored cable-stayed suspension bridge is established with finite element program and pile-soil-structure interaction is simulated by use of the equivalent embed fixation model. Based on the FE model, model analysis is carried out and the effects of pile-soil-structure interaction on dynamic behavior of long-span self-anchored cable-stayed suspension bridge are specially studied. The seismic response analysis result considering that pile-soil-structure interaction was compared with that of without considering such interaction. The analysis result show that interaction reduced horizontal displacement in middle span of stiffening beam and top of tower, horizontal moment not only at bottom of tower, but also assistant piers. The research results provide some theoretical foundation to composite structure system.


2011 ◽  
Vol 243-249 ◽  
pp. 1798-1802
Author(s):  
Feng Miao ◽  
Guan Ping ◽  
Wang Bo

Based on scheme of Dalian gulf cross-sea bridge, in this paper, a 3-dimensional FE model for Self-anchored cable-stayed suspension bridge is established with finite element program and pile-soil-structure interaction is simulated by use of the equivalent embed fixation model. Based on the FE model, model analysis is carried out and the effects of pile-soil-structure interaction on dynamic behavior of long-span self-anchored cable-stayed suspension bridge are specially studied. Under vertical excitation, the seismic response analysis result considering that pile-soil-structure interaction was compared with that of without considering such interaction. The analysis result show that interaction reduced longitudinal displacement of stiffening beam in middle of main span and tower at bottom, moment at bottom of tower and auxiliary pier pile, but enlarged the moment of conjoining section between steel and steel beam. The research results provide some theoretical foundation to composite structure system.


2018 ◽  
Vol 11 (5) ◽  
pp. 1076-1109
Author(s):  
M. G. C. SANTOS ◽  
M. R. S. CORRÊA

Abstract This paper presents a study of the effects caused by soil-structure interaction in reinforced concrete wall building on shallow foundation. It was verified the influence of displacements of supports on the redistribution of internal forces in the structural walls and in the redistribution of loads on the foundation. The superstructure was represented by shell finite elements and the soil-structure interaction was evaluated by iterative methods that consider the stiffness of the building, the soil heterogeneity and the group effect of foundation elements. An alternative model that considers the soil-structure interaction is adopted and the concrete walls are simulated by bar elements. The results indicate that the soil-structure interaction produces significant changes of the stress flow, with larger influences on the lower walls, as well as a tendency of settlements standardization and load migration to supports with smaller settlements.


Author(s):  
Souhaib Bougherra ◽  
Mourad Belgasmia

Soil structure interaction can significantly affect the behavior of buildings subjected to seismic attacks, wind excitation, and other dynamic loading types. Different researches were developed in the last decade demonstrating the importance of taking account of soil properties and its effect in changing the behavior of the structures. It is common practice to analyze the structures assuming a fixed base, but this approach is not appropriate for the reason that neglecting the soil parameters such as the stiffness and the damping affect the behavior of the structure. Therefore, the nonlinear static approach provided the nonlinear response behavior of a structure for different types of soil. In this chapter, the authors will discuss some proposed methods in taking account of soil-structure interaction that must be considered from the very beginning of the design process and its impact on the structural behavior optimization by adding springs and dashpots to reproduce the soil behavior.


Sign in / Sign up

Export Citation Format

Share Document