Seismic Performance of Eccentrically Braced Frames with Shear Link

2020 ◽  
Vol 35 ◽  
pp. 55-68
Author(s):  
Sara Ansari ◽  
Javad Tashakori ◽  
Javad Razzaghi

The push-over nonlinear evaluation of four eccentrically braced frame performance was conducted to assess the plastic deformation and location of plastic hinges in buildings with six, nine, twelve and fifteen stories. The excessive plastification of out-of-beam members is revealed in the majority of these buildings while the AISC design provision allows the moderate plastification in these members. Therefore, the beams out of link might be in danger of fracture of web and flange. Likewise, this was controversial evidence in Chrischurch earthquakes. In order to modify this problem either using fixed connection of braced members or using the very short shear links which have less end moment force than out-of-link beams moment strength are recommended. By this modification, the response modification coefficients are calculated for these buildings which are almost equal to the provision value. The maximum plastic rotation of shear links recommended by provisions (0.08 radian) is the upper ultimate limit to prevent emerging of out-of-link member`s instability.

2018 ◽  
Vol 763 ◽  
pp. 384-393 ◽  
Author(s):  
Dimitry Volynkin-Ewens ◽  
George Charles Clifton ◽  
Peter Dusicka

Steel links inside Eccentrically Braced Frames (EBFs) can be classified as either short, intermediate or long. The more commonly used short links yield primarily in shear and dissipate incoming energy inside the web of the link. Advances in shear link research and industry practice, particularly the increased use of bolted links, have allowed greater freedom in the design of the link section, as the section used can be decoupled from the collector beam section. Seven shear link specimens were tested inside a full scale EBF set up, and were subjected to AISC’s 2005 shear link loading protocol. Increasing levels of rotation were applied to links of varied cross-sections and intermediate stiffener spacings. Links with low web aspect ratios performed to a higher rotation than past research would have suggested, and when intermediate stiffeners were removed, they performed to an even higher rotation. Recommendations for design are presented, including a relaxation of the stiffener spacing equations when web aspect ratio criteria are met. A provision is also included to allow greater rotational ductilities in EBF frames with low web aspect shear links.


1991 ◽  
Vol 18 (1) ◽  
pp. 140-148 ◽  
Author(s):  
A. Ghobarah ◽  
T. Ramadan

Eccentrically braced steel frames have excellent elastic stiffness under moderate lateral loads and good ductility when subjected to severe seismic loading conditions. Under extreme loading, the inelastic behaviour is designed to be confined to a ductile link element. The behaviour of links of various lengths in eccentrically braced frames is evaluated using a finite element model. The link is subjected to extreme cyclic loading simulating a severe earthquake. The effect of the link length on its performance, capacity for energy dissipation, plastic mechanisms, and mode of failure are investigated. Measures for improving the performance of long links are examined. It was found that the most efficient link is the short shear link. However, the short link deformation is characterized by large angles of deformation, which may cause substantial damage to the nonstructural elements. On the other hand, long links were found to have smaller angles of deformation than short links, but with reduced ductility levels. An effective approach to improve the performance of long links is by increasing the flange thickness of the link section with the appropriate adjustment to the stiffener design. This technique can be applied to links of length up to 1.4 times the critical shear link length. Key words: steel, eccentric, braced, frame, link, seismic, ductility, design.


Sign in / Sign up

Export Citation Format

Share Document