Research on Failure Criteria of Homogenization Model of Masonry

2011 ◽  
Vol 117-119 ◽  
pp. 1172-1176
Author(s):  
Wei Jun Yang ◽  
Yu Shuang Ni ◽  
Ning Jiang

Abstract. Based on the newly developed homogenization theory of masonry, homogenization model of masonry is built in this paper. And a failure criteria adapation to masonry homogenization units is suggested union finite element analysis result of homogenization model.

2017 ◽  
Vol 24 (3) ◽  
pp. 415-422 ◽  
Author(s):  
Ke Chun Shen ◽  
Guang Pan ◽  
JiangFeng Lu

AbstractThe buckling and layer failure characteristics of composite laminated cylinders subjected to hydrostatic pressure were investigated through finite element analysis for underwater vehicle application. The Tsai-Wu failure criteria were used as the failure criteria for the buckling analysis. A sensitivity analysis was conducted to research the influence of the number of elements on the critical buckling pressure. ANSYS, a finite element program, successfully predicted the buckling pressure with 5.3–27.8% (linear) and 0.3–22.5% (nonlinear) deviation from experimental results. The analysis results showed that the cylinders can carry more pressure after a slight decrease in pressure and recovery of the supporting load. For layer failure analysis, it was found that the failure that occurred in the 0° layer was more serious than that in the 90° layer within the neighboring layers at the inner layers (nos. 1–7) and outer layers (nos. 8–24).


2011 ◽  
Vol 306-307 ◽  
pp. 733-737
Author(s):  
Xu Dan Dang ◽  
Xin Li Wang ◽  
Hong Song Zhang ◽  
Jun Xiao

In this article the finite element software was used to analyse the values for compressive strength of X-cor sandwich. During the analysis, the failure criteria and materials stiffness degradation rules of failure mechanisms were proposed. The failure processes and failure modes were also clarified. In the finite element model we used the distributions of failure elements to simulate the failure processes. Meanwhile the failure mechanisms of X-cor sandwich were explained. The finite element analysis indicates that the resin regions of Z-pin tips fail firstly and the Z-pins fail secondly. The dominant failure mode is the Z-pin elastic buckling and the propagation paths of failure elements are dispersive. Through contrast the finite element values and test results are consistent well and the error range is -7.6%~9.5%. Therefore the failure criteria and stiffness degradation rules are reasonable and the model can be used to predict the compressive strength of X-cor sandwich.


2014 ◽  
Vol 936 ◽  
pp. 43-52
Author(s):  
Xiang Hong Kong ◽  
Zhi Jin Wang

Experiment and Finite element analysis were used to study the strengths of composite laminates with and without holes. Finite element progressive damage analysis with Tsai-Wu criteria was applied to calculate the compressive residual strength of composite laminate. Abaqus and its user subroutine USDFLD were used for the finite element analysis. Tsai-Wu criteria as the failure criteria was realized in USDFLD as a Fortran program segment, and the stiffness degradation for the damaged elements was also realized by USDFLD. Analytic results gotten by progressive damage method were very close to the experimental results.


2007 ◽  
Vol 344 ◽  
pp. 663-668 ◽  
Author(s):  
Xiao Cong He ◽  
Ian Pearson ◽  
Ken W. Young

Self-pierce riveting (SPR) is a sheet material joining technique which is suitable for joining dissimilar materials, as well as coated and pre-painted materials. Published work relating to finite element analysis of SPR joints is reviewed in this paper, in terms of process, static strength, fatigue strength, vibration characteristics and assembly dimensional prediction of the SPR joints. A few important numerical issues are discussed, including material modelling, meshing procedure, failure criteria and friction between substrates and between rivet and substrate. It is concluded that the finite element analysis of SPR joints will help future applications of SPR by allowing system parameters to be selected to give as large a process window as possible for successful joint manufacture. This will allow many tests to be simulated that would currently take too long to perform or be prohibitively expensive in practice, such as modifications to rivet geometry, die geometry or material properties. The main goal of the paper is to review recent progress in finite element analysis of SPR joints and to provide a basis for further research.


Sign in / Sign up

Export Citation Format

Share Document