The Automatic Analysis System of the Main Beam of Horizontal Directional Drilling Based on APDL

2011 ◽  
Vol 148-149 ◽  
pp. 1244-1247
Author(s):  
Ze Guang Han ◽  
Tao Han ◽  
Rui Qin Hao ◽  
Jian Feng Yang ◽  
Zhi Wei Li

The Directional Drilling has been extensively applied in Construction of Highway along with popularizing the Trenchless Technology. The main problem is lower efficiency and design level. In this paper, the automatic analysis system of the main beam, which is a critical component of Horizontal Directional Drilling, has been developed based on ANSYS and APDL, which is a advanced and commercial software. In this system, the processes, such as the modeling, analysis, and optimum of main beam, are automatic completed by modular and packaging technology. Using this system, the quickly design of main assembly unit about Horizontal Directional Drilling can be easily achieved under whole operating conditions. The system reliability and rationality are also put to the proof by some examples. This system has the merits of friendly interface and easily operation, and is an effectual means solving complex mechanical component design.

2011 ◽  
Vol 243-249 ◽  
pp. 6241-6245
Author(s):  
Ze Guang Han ◽  
Hu Min ◽  
Rui Qin Hao

In this paper, the main beam, which is one of the critical components of Horizontal Directional Drilling (HDD) GD2800-L, is selected as a subject investigated. The geometric model of HDD is firstly established, its static and buckling analysis are also taken to get the stress and deflection distribution, buckling mode and critical load by the ANSYS. Acquired results show that the working condition of main beam is mainly decided by HDD penetrating angle and the most dangerous working condition is its working at maximum penetrating angle. In order to decrease weight of main beam, its optimization design has been further completed, and 13 percent of main beam weight is reduced, but stress and deflection distribution increase slightly within bounds. The methods can greatly improve design efficiency and reduce steel plate consumption and product manufacturing cost.


Author(s):  
Phichayasini Kitwatthanathawon ◽  
Thara Angskun ◽  
Jitimon Angskun

2015 ◽  
pp. 91-96
Author(s):  
I. E. Kiryanov ◽  
Yu. D. Zemenkov ◽  
S. M. Dorofeev ◽  
V. S. Toropov

On the basis of analyzing the characteristics of used materials and the parameters of trenchless transitions profiles was developed emergency response, including several schemes of release a pipe jammed in the hole during the pipeline pulling in the pipeline construction by horizontal directional drilling. Proposed schemes applicability analyzed for trenchless construction real conditions.


Author(s):  
Saeed Delara ◽  
Kendra MacKay

Horizontal directional drilling (HDD) has become the preferred method for trenchless pipeline installations. Drilling pressures must be limited and a “no-drill zone” determined to avoid exceeding the strength of surrounding soil and rock. The currently accepted industry method of calculating hydraulic fracturing limiting pressure with application of an arbitrary safety factor contains several assumptions that are often not applicable to specific ground conditions. There is also no standard procedure for safety factor determination, resulting in detrimental impacts on drilling operations. This paper provides an analysis of the standard methods and proposes two alternative analytical models to more accurately determine the hydraulic fracture point and acceptable drilling pressure. These alternative methods provide greater understanding of the interaction between the drilling pressures and the surrounding ground strength properties. This allows for more accurate determination of horizontal directional drilling limitations. A comparison is presented to determine the differences in characteristics and assumptions for each model. The impact of specific soil properties and factors is investigated by means of a sensitivity analysis to determine the most critical soil information for each model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hailin Zhang ◽  
João Antonangelo ◽  
Chad Penn

AbstractPortable X-ray fluorescence (pXRF) spectrometer allows fast in-situ elemental determination without wet digestion for soils or geological materials, but the use of XRF on wet materials is not well documented. Our objective was to develop a rapid field method using pXRF to measure metals in the residues from horizontal directional drilling (HDD) operations so that proper disposal decisions can be made in-situ. To establish the procedure, we spiked soil samples with 4 concentrations of Cr, Ni, Cu, Zn, As, Cd, and Pb up to 1000 mg kg−1, and then the metal concentrations were determined by wet chemical method after drying and acid digestion (standard method), and by pXRF, also at laboratory conditions, after drying and at two different moisture conditions. The measurements by pXRF and standard method after drying and after removal of excess water (AREW) were highly correlated with slopes ranging from 0.83 ± 0.01 to 1.08 ± 0.01 (P < 0.001) for all metals. The relationship was better AREW than the saturated paste without removal of excess water and the moisture content affected only the accuracy of As, Cd, and Pb. The procedure established was successfully used for HDD residues collected from 26 states of US with moisture content ranging from 14 to 83% AREW. The pXRF was proven to be a reliable tool for fast detection of common metals in dried soils and HDD residues, and samples containing < 30% moisture content without needing to correct for moisture. If the moisture is > 30%, excess water in samples need to be removed with a commercially available filter press to achieve high accuracy. The developed procedures reduce time of metal detection from days to about an hour which allows drilling operators to make quick decisions on soil or HDD disposal.


2008 ◽  
Vol 64 (3) ◽  
pp. 272-282 ◽  
Author(s):  
Hiroyasu ISHII ◽  
Kanji HIGAKI ◽  
Shunsuke KAWAI ◽  
Shinji MIWA ◽  
Ryonosuke KOIZUMI ◽  
...  

2021 ◽  
Vol 117 ◽  
pp. 104159
Author(s):  
Sheng Huang ◽  
Chao Kang ◽  
Alireza Bayat ◽  
Kent Heath ◽  
Cainan Trovato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document