Study on Soil Dynamic Parameters of One Site in Shijiazhuang

2012 ◽  
Vol 170-173 ◽  
pp. 1060-1063
Author(s):  
Ji Hua Chen ◽  
Hui Ge Wu ◽  
Wei Wang ◽  
Ai Hong Zhou

Earthquake effect of the construction site in Shijiazhuang city was studied when the artificial wave is taken as input ground motion. The dynamic parameters in the model were taken from the measured values, recommended values in 94 Code and recommended values by X.M. Yuan respectively. The ground peak acceleration and acceleration response spectra are compared and analyzed, and it shows that the calculation results from the recommended values by X.M. Yuan are more close to the results from the real measured values than 94 Code. The results can be taken as a reference of the soil dynamic value in seismic risk assessment of engineering projects.

2019 ◽  
Vol 10 (04) ◽  
pp. 1850011 ◽  
Author(s):  
Mohammad Katebi ◽  
Behrouz Gatmiri ◽  
Pooneh Maghoul

This paper investigates topographic effects of rocky valleys with irregular topographic conditions subjected to vertically propagating SV waves of Ricker type using a boundary element code. Valleys with two intersecting slopes, [Formula: see text] and [Formula: see text], are modelled in order to study their combined effects on ground motion. Presented in the form of pseudo-acceleration response spectra, results of this work can be extended to similar topographies. The main findings are: (i) [Formula: see text] (the first slope angle) and [Formula: see text] (L is the half width of the valley and [Formula: see text] is its corresponding height) have amplifying effects, and [Formula: see text] (the second slope angle) has de-amplifying effects on the site response. (ii) [Formula: see text] has a straight effect on intensifying the effects of both [Formula: see text] and [Formula: see text]. (iii) The combined effects of slope angles have been found to be important in modifying the response so more than a single slope should be considered for seismic analysis. (iv) Engineers should use the maximum amplification of 2.4 in case of valleys with the first and second slope angles below [Formula: see text].


Author(s):  
C. Adam ◽  
F. Ziegler

Abstract The influence of light-weight secondary structures on the dynamic response of earthquake excited hysteretically damped shear frames with various elastic and inelastic substructure properties is studied numerically. The numerical procedure used in this paper is based on an iterative synthesis, where interface conditions as well as inelastic deformations are treated as additional fictitious loads and their intensities are updated in an iterative process. Acceleration response spectra of shear frames as well as floor response spectra are generated for various modal primary to secondary mass ratios. Also spectra of the standard deviation of primary and secondary accelerations are computed. Results, efficiently derived by the proposed method, are set in contrast to those derived by decoupled analyses to estimate their capability with respect to hysteretic structural behavior.


1996 ◽  
Vol 86 (1B) ◽  
pp. S333-S349 ◽  
Author(s):  
J. P. Bardet ◽  
C. Davis

Abstract During the 1994 Northridge earthquake, the Van Norman Complex yielded an unprecedented number of recordings with high acceleration, in the close proximity of the fault rupture. These strong-motion recordings exhibited the pulses of the main event. One station recorded the largest velocity ever instrumentally recorded (177 cm/sec), resulting from a 0.86 g peak acceleration with a low frequency. Throughout the complex, the horizontal accelerations reached peak values ranging from 0.56 to 1.0 g, except for the complex center, where the peak acceleration did not exceed 0.43 g. The vertical acceleration reached maximum peak values comparable with those of the horizontal acceleration. The acceleration response spectra in the longitudinal and transverse directions were significantly different. Such a difference, which is not yet well documented in the field of geotechnical earthquake engineering, indicates that the amplitude and frequency content of the ground motion was directionally dependent in the Van Norman Complex.


2020 ◽  
Author(s):  
Antonio Giovanni Iaccarino ◽  
Matteo Picozzi ◽  
Dino Bindi ◽  
Daniele Spallarossa

<p>Including site specific amplification factors in ground motion prediction models represented an advance for PSHA (Atkinson 2006; Rodríguez-Marek et al. 2013; Kotha et al. 2017) that has become nowadays a standard. However, this issue has only recently received attention by the seismological community of earthquake early warning (EEW) (Spallarossa et al., 2019; Zhao and Zhao, 2019), which applications require a real-time prediction of ground motion and the delivery of alert messages to users for mitigating their exposure to seismic risk. Indeed, all EEW systems are high-technological infrastructures devoted to the real-time and automatic detection of earthquakes, rapid assessment of the associated seismic hazard for targets and the prompt delivery of alerts trough fast telecommunication networks. Among them, the on-site approaches are based on seismic networks placed near to the target, indifferently by the location of seismic threats and they issue the alert predicting the ground motion at the target from P-wave parameter. This configuration cause that On-Site EEWS are generally highly affected by site conditions.</p><p>In this work, we calibrated ground motion prediction models for on-site EEW considering acceleration response spectra (RSA) and the P-waves EEW parameters Iv2 and Pd, and we investigated the role of site-effects. We considered a dataset of nearly 60 earthquakes belonging to the Central Italy 2016-17 sequence. The high density of stations near to the sequence has allowed us to use a non-ergodic random-effect regression approach to explore and to reduce the contribution of site-effects to the uncertainty of the On-site laws predictions. We grouped the records in two ways: by stations and by EC8 classification. Then, we validated the estimated models by the Leave One Out (L1Out) technique and applied a K-means analysis to assess the performance of the EC8 classification.</p><p>The residuals analysis proved that grouping by station provides a set of relations that improves the predictions at many stations. On the contrary, L1Out cross-validation proved that the regressions retrieved grouping by EC8 classification produce higher uncertainties on the predictions than the others. Furthermore, the cross-validation proved that Iv2 is more correlated to RSA than Pd. Finally, the analysis of the random effect vs period curves confirmed that EC8 classification is unrelated to the site effect on RSA even looking only at the trend of these curves.</p><p>In conclusion, non-ergodic random-effect regression can be used also in the EEW applications to predict site-specific ground motion. EEWS that use this approach are less dependent by site-effect and able to provide more precise and reliable alerts.</p>


Sign in / Sign up

Export Citation Format

Share Document