On-site Earthquake Early Warning: Predictive Models for Acceleration Response Spectra Considering Site-Effects

Author(s):  
Antonio Giovanni Iaccarino ◽  
Matteo Picozzi ◽  
Dino Bindi ◽  
Daniele Spallarossa

<p>Including site specific amplification factors in ground motion prediction models represented an advance for PSHA (Atkinson 2006; Rodríguez-Marek et al. 2013; Kotha et al. 2017) that has become nowadays a standard. However, this issue has only recently received attention by the seismological community of earthquake early warning (EEW) (Spallarossa et al., 2019; Zhao and Zhao, 2019), which applications require a real-time prediction of ground motion and the delivery of alert messages to users for mitigating their exposure to seismic risk. Indeed, all EEW systems are high-technological infrastructures devoted to the real-time and automatic detection of earthquakes, rapid assessment of the associated seismic hazard for targets and the prompt delivery of alerts trough fast telecommunication networks. Among them, the on-site approaches are based on seismic networks placed near to the target, indifferently by the location of seismic threats and they issue the alert predicting the ground motion at the target from P-wave parameter. This configuration cause that On-Site EEWS are generally highly affected by site conditions.</p><p>In this work, we calibrated ground motion prediction models for on-site EEW considering acceleration response spectra (RSA) and the P-waves EEW parameters Iv2 and Pd, and we investigated the role of site-effects. We considered a dataset of nearly 60 earthquakes belonging to the Central Italy 2016-17 sequence. The high density of stations near to the sequence has allowed us to use a non-ergodic random-effect regression approach to explore and to reduce the contribution of site-effects to the uncertainty of the On-site laws predictions. We grouped the records in two ways: by stations and by EC8 classification. Then, we validated the estimated models by the Leave One Out (L1Out) technique and applied a K-means analysis to assess the performance of the EC8 classification.</p><p>The residuals analysis proved that grouping by station provides a set of relations that improves the predictions at many stations. On the contrary, L1Out cross-validation proved that the regressions retrieved grouping by EC8 classification produce higher uncertainties on the predictions than the others. Furthermore, the cross-validation proved that Iv2 is more correlated to RSA than Pd. Finally, the analysis of the random effect vs period curves confirmed that EC8 classification is unrelated to the site effect on RSA even looking only at the trend of these curves.</p><p>In conclusion, non-ergodic random-effect regression can be used also in the EEW applications to predict site-specific ground motion. EEWS that use this approach are less dependent by site-effect and able to provide more precise and reliable alerts.</p>

2020 ◽  
Vol 59 (4) ◽  
pp. 257-272
Author(s):  
Javier Lermo-Samaniego

We propose a ground motion attenuation model (ground motion prediction equation, GMPE) for Southeast Mexico. We suppress site effects obtained from Earthquake Horizontal to Vertical Spectral Ratio (EHVSR) as a reliable estimate of site effects. (The attenuation model was built as a function of magnitude and hypocentral distance)). We used 86 seismic events with 5.0 ? Mw ? 8.2 (earthquake recordings for the 9/7/2017, Mw8.2 Tehuantepec earthquake are included), and distances between 52 ? R ? 618 km. They were recorded in nine stations of the Engineering Institute of the National Autonomous University of Mexico (II-UNAM) accelerometric network installed in the states of Chiapas, Oaxaca, Tabasco and Veracruz. Site effects at each of these stations were estimated by using the average EHVSR. Then, by means of this spectral ratio the site effects were suppressed at each station and for every record. This work points out the need to remove the site effect in the GMPE. The current models overestimate this effect. 


2019 ◽  
Vol 177 (2) ◽  
pp. 801-819
Author(s):  
Saman Yaghmaei-Sabegh ◽  
Mehdi Ebrahimi-Aghabagher

2020 ◽  
pp. 875529302095244
Author(s):  
Shu-Hsien Chao ◽  
Che-Min Lin ◽  
Chun-Hsiang Kuo ◽  
Jyun-Yan Huang ◽  
Kuo-Liang Wen ◽  
...  

We propose a methodology to implement horizontal-to-vertical Fourier spectral ratios (HVRs) evaluated from strong ground motion induced by earthquake (EHVRs) or ambient ground motion observed from microtremor (MHVRs) individually and simultaneously with the spatial correlation (SC) in a ground-motion prediction equation (GMPE) to improve the prediction accuracy of site effects. We illustrated the methodology by developing an EHVRs-SC-based model which supplements Vs30 and Z1.0 with the SC and EHVRs collected at strong motion stations, and a MHVRs-SC-based model that supplements Vs30 and Z1.0 with the SC and MHVRs observed from microtremors at sites which were collocated with strong motion stations. The standard deviation of the station-specific residuals can be reduced by up to 90% when the proposed models are used to predict site effects. In the proposed models, the spatial distribution of the predicted station terms for peak ground acceleration (PGA) from MHVRs at 3699 sites is consistent with that of the predicted station terms for PGA from EHVRs at 721 strong motion stations. Prediction accuracy for stations with inferred Vs30 is similar to that of stations with measured Vs30 with the proposed models. This study provides a methodology to simultaneously implement SC and EHVRs, or SC and MHVRs in a GMPE to improve the prediction accuracy of site effects for a target site with available EHVRs or MHVRs information.


Sign in / Sign up

Export Citation Format

Share Document