vertically propagating
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 24)

H-INDEX

26
(FIVE YEARS 3)

MAUSAM ◽  
2021 ◽  
Vol 52 (2) ◽  
pp. 325-332
Author(s):  
SOMENATH DUTTA

An attempt has been made to parameterize the wave momentum flux wave energy flux and pressure drag associated with mountain wave across the Mumbai-Pune section of western ghat mountain in India.   A two dimensional frictionless, adiabatic, hydrostatic, Boussinesq flow with constant basic flow (U) and constant Brunt Vaisala frequency (N) across a mesoscale mountain with infinite extension in the Cross wind direction, has been considered here.   It has been shown that for a vertically propagating (or decaying) waves the wave momentum flux is downward (or upward) and the wave energy flux is upward (or downward). It has also been shown that both the fluxes are independent of the half width of the bell shaped part of the western ghat. The analytically derived formula have been used to compute the pressure drag and to find out the vertical profile of wave momentum flux and wave energy flux for different cases of mountain wave across western ghat, as reported by earlier workers.


2021 ◽  
Vol 137 ◽  
pp. 104270
Author(s):  
Denghui Dai ◽  
M. Hesham El Naggar ◽  
Ning Zhang ◽  
Zhanbin Wang

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zimeng Li ◽  
Hidenori Aiki ◽  
Motoki Nagura ◽  
Tomomichi Ogata

AbstractA recently developed energy flux diagnosis scheme, which incorporates a smooth connection between the tropical and subtropical zones, is used in the present study to investigate vertically propagating waves in the tropical Indian Ocean (IO) based on the result of a linear, continuously stratified ocean model driven by climatological wind forcing. This extended diagnosis reveals deep-reaching eastward energy fluxes at the equator which develop four times per year and are associated with equatorial Kelvin waves (KWs) generated by semiannual winds. The authors find that the downward transfer of wave energy is particularly deep in the southern Bay of Bengal (SBoB). This downward flux is attributed to off-equatorial Rossby waves and appears four times per year, maximizing its amplitude during November–December. Southwesterly winds in the Arabian Sea intensify eastward energy flux of KWs at mid-depth, which maximizes in amplitude in August. This is contrastive to KW energy flux at the surface which peaks in May. These mid-depth equatorial KW packets subsequently arrive at the eastern boundary of the IO and are diffracted poleward to produce downward energy flux in November and December detected in the SBoB.


2021 ◽  
Vol 9 ◽  
Author(s):  
Federico Galetto ◽  
Alessandro Bonaccorso ◽  
Valerio Acocella

Dikes feed most eruptions, so understanding their mechanism of propagation is fundamental for volcanic hazard assessment. The variation in geometry of a propagating dike as a function of the injection rate remains poorly studied. Here we use experiments injecting water into gelatin to investigate the variation of the thickness, width and length of a flux-driven dike connected to its source as a function of the injection time and intruded volume. Results show that the thickness of vertically propagating dikes is proportional to the injection rate and remains constant as long as the latter is constant. Neither buoyancy nor injected volume influence the thickness. The along-strike width of the dike is, however, proportional to the injected volume. These results, consistent with the inferred behavior of several dikes observed during emplacement, open new opportunities to better understand how dikes propagate and also to forecast how emplacing dikes may propagate once their geometric features are detected in real-time through monitoring data.


Author(s):  
Xin Xu ◽  
Runqiu Li ◽  
Miguel A. C. Teixeira ◽  
Yixiong Lu

AbstractThis work studies nonhydrostatic effects (NHE) on the momentum flux of orographic gravity waves (OGWs) forced by isolated three-dimensional orography. Based on linear wave theory, an asymptotic expression for low horizonal Froude number ( where (U, V) is the mean horizontal wind, γ and a are the orography anisotropy and half-width and N is the buoyancy frequency) is derived for the gravity wave momentum flux (GWMF) of vertically-propagating waves. According to this asymptotic solution, which is quite accurate for any value of Fr, NHE can be divided into two terms (NHE1 and NHE2). The first term contains the high-frequency parts of the wave spectrum that are often mistaken as hydrostatic waves, and only depends on Fr. The second term arises from the difference between the dispersion relationships of hydrostatic and nonhydrostatic OGWs. Having an additional dependency on the horizontal wind direction and orography anisotropy, this term can change the GWMF direction. Examination of NHE for OGWs forced by both circular and elliptical orography reveals that the GWMF is reduced as Fr increases, at a faster rate than for two-dimensional OGWs forced by a ridge. At low Fr, the GWMF reduction is mostly attributed to the NHE2 term, whereas the NHE1 term starts to dominate above about Fr = 0.4. The behavior of NHE is mainly determined by Fr, while horizontal wind direction and orography anisotropy play a minor role. Implications of the asymptotic GWMF expression for the parameterization of nonhydrostatic OGWs in high-resolution and/or variable-resolution models are discussed.


Author(s):  
Ioana Colfescu ◽  
Joseph B. Klemp ◽  
Massimo A. Bollasina ◽  
Stephen D. Mobbs ◽  
Ralph R. Burton

AbstractOn 20 October 2016, aircraft observations documented a significant train of lee waves above and downstream of the Snæfellsnes Peninsula on the west coast of Iceland. Simulations of this event with the Weather Research and Forecasting (WRF) Model provide an excellent representation of the observed structure of these mountain waves. The orographic features producing these waves are characterized by the isolated Snæfellsjökull volcano near the tip of the peninsula and a fairly uniform ridge along its spine. Sensitivity simulations with the WRF Model document that the observed wave train consists of a superposition of the waves produced individually by these two dominant orographic features. This behavior is consistent with idealized simulations of a flow over an isolated 3-D mountain and over a 2-D ridge, which reproduce the essential behavior of the observed waves and those captured in the WRF simulations. Linear analytic analysis confirms the importance of a strong inversion at the top on the boundary layer in promoting significant wave activity extending far downstream on the terrain. However, analysis of the forced and resonant modes for a two layer atmosphere with a capping inversion suggest that this wave train may not be produced by resonant modes whose energy is trapped beneath the inversion. Rather, these appear to be vertically propagating modes with very small vertical group velocity that can persist far downstream of the mountain. These vertically propagating waves potentially provide a mechanism for producing near-resonant waves further aloft due to interactions with a stable layer in the mid-troposphere.


2021 ◽  
Author(s):  
Simon Lee ◽  
Andrew Charlton-Perez ◽  
Jason Furtado ◽  
Steven Woolnough

<p>The strength of the stratospheric polar vortex is a key contributor to subseasonal prediction during boreal winter. Anomalously weak polar vortex events can be induced by enhanced vertically propagating Rossby waves from the troposphere, driven by blocking and wave breaking. Here, we analyse a tropospheric pattern—the Scandinavia–Greenland (S–G) pattern—associated with both processes. The S–G pattern is defined as the second empirical orthogonal function (EOF) of mean sea‐level pressure in the northeast Atlantic. The first EOF is a zonal pattern resembling the North Atlantic Oscillation. We show that the S–G pattern is associated with a transient amplification of planetary wavenumber 2 and meridional eddy heat flux, followed by the onset of a persistently weakened polar vortex. We then analyse 10 different models from the S2S database, finding that, while all models represent the structure of the S–G pattern well, some models have a zonal bias with more than the observed variability in their first EOF, and accordingly less in their second EOF. This bias is largest in the models with the lowest resolution, and consistent with biases in blocking and Rossby wave breaking in these models. Skill in predicting the S–G pattern is not high beyond week 2 in any model, in contrast to the zonal pattern. We find that the relationship between the S–G pattern, enhanced eddy heat flux in the stratosphere, and a weakened polar vortex is initially well represented, but decays significantly with lead time in most S2S models. Our results motivate improved representation of the S–G pattern and its stratospheric response at longer lead times for improved subseasonal prediction of the stratospheric polar vortex.</p>


Author(s):  
Christopher R McGann ◽  
Brendon Bradley ◽  
Liam Wotherspoon ◽  
Robin Lee

Plane strain (2D) finite element models are used to examine factors contributing to basin effects observed for multiple seismic events at sites in the Thorndon basin of Wellington, New Zealand. The models consider linear elastic soil and rock response when subjected to vertically-propagating shear waves. Depth-dependent shear wave velocities are considered in the soil layers, and the effects of random variations of soil velocity within layers are modelled. Various rock shear wave velocity configurations are considered to evaluate their effect on the modelled surficial response. It is shown that these simple 2D models are able to capture basin reverberations and compare more favourably to observations from strong motion recordings than conventional 1D site response models. It is also shown that consideration of a horizontal impedance contrast across the Wellington Fault affects spectral response and amplification at longer periods, suggesting the importance of this feature in future ground motion modelling studies in the Wellington region.


Author(s):  
Arthur Frankel ◽  
Alex Grant

ABSTRACT Site response, sedimentary basin amplification, and earthquake stress drops for the Portland, Oregon area were determined using accelerometer recordings at 16 sites of 10 local earthquakes with MD 2.6–4.0. A nonlinear inversion was applied to calculate site response (0.5–10 Hz), corner frequencies, and seismic moments from the Fourier spectra of the earthquakes. Site amplifications at lower frequencies of 0.1–2.0 Hz were determined from Fourier spectra of four regional earthquakes with Mw 5.8–6.4. Amplifications were calculated relative to a stiff-soil site outside the Portland and Tualatin basins. Sites on artificial fill and Holocene alluvium show strong amplification peaks (factor of 5) around 1–2 Hz. Sites on the Portland Hills, consisting of thin soil over basalt, display spectral peaks at 4–5 Hz (factor of 4). Spectral peaks at both sites are similar to those predicted for vertically propagating S waves from VS profiles determined at these sites using a borehole and refraction microtremor analysis. The largest amplifications at 0.1–1 Hz were found at stiff-soil sites in the Tualatin basin, based on recordings of regional earthquakes. Amplifications of a factor of 10, at about 0.3 Hz, were observed for a site in the deeper portion of the Tualatin basin and a factor of 7 at 0.5–0.6 Hz for two adjacent sites closer to the border of that basin. Stiff-soil sites in the Portland basin exhibit amplifications of 2–3 at frequencies of about 0.3–0.8 Hz. The frequencies of the amplification peaks for the deep Tualatin basin site can be explained by S-wave resonance in the shallow sediments, but the observed amplification is underestimated. Earthquake stress drops determined from the inversion range from 3 to 11 MPa, with no overall dependence on seismic moment.


Sign in / Sign up

Export Citation Format

Share Document