Dynamic Interaction of Viscoelastic Soil and Fractional Derivative Type Lining with a Circular Tunnel

2012 ◽  
Vol 170-173 ◽  
pp. 1542-1545
Author(s):  
Min Jie Wen ◽  
Zi Ping Su ◽  
Hui Tuan He

Coupled harmonic vibration of viscoelastic soil and fractional derivative type lining system with a deeply buried circular tunnel is investigated in the frequency domain. Based on theory of elastic and fractional derivative, steady state response of the viscoelastic soil and lining system is studied. Regarding the lining as a medium with fractional derivative constitutive behavior, and the analytical expressins of the displacement and stress of the soil and lining are respectively obtained by the continuity conditions on the inner boundary of lining and the interface between the soil and the lining. The order of fractional derivative model has a greater influence on system dynamic response, and it dependent on the material parameters of lining. With the frequency increasing, the resonance effects of system decrease.

2016 ◽  
Vol 32 (1) ◽  
pp. 25-33 ◽  
Author(s):  
C. Huang ◽  
J.-S. Duan

AbstractThe steady-state response to periodic excitation in the linear fractional vibration system was considered by using the fractional derivative operator . First we investigated the response to the harmonic excitation in the form of complex exponential function. The amplitude-frequency relation and phase-frequency relation were derived. The effect of the fractional derivative term on the stiffness and damping was discussed. For the case of periodic excitation, we decompose the periodic excitation into a superposition of harmonic excitations by using the Fourier series, and then utilize the results for harmonic excitations and the principle of superposition, where our adopted tactics avoid appearing a fractional power of negative numbers to overcome the difficulty in fractional case. Finally we demonstrate the proposed method by three numerical examples.


2012 ◽  
Vol 166-169 ◽  
pp. 1510-1513
Author(s):  
Lin Chao Liu ◽  
Lie Yu ◽  
Huan Xin Yu

Many materials show viscoelastic properties under long term load, because of the complexity of viscoelastic problem, it is not enough for describing the characteristics of material and structure with classic viscoelastic model. The stress-strain constitutive relationship is described by fractional derivative viscoelastic model, the radial displacement and stress of thick-walled cylinder under internal pressure are obtained by using Fourier transform and the properties of fractional derivative, and we also investigated the steady state response of compressible fractional derivative viscoelastic thick-walled cylinder.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 850-856 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Yun-Yun Xu

Abstract The steady state response of a fractional order vibration system subject to harmonic excitation was studied by using the fractional derivative operator ${}_{-\infty} D_t^\beta,$where the order β is a real number satisfying 0 ≤ β ≤ 2. We derived that the fractional derivative contributes to the viscoelasticity if 0 < β < 1, while it contributes to the viscous inertia if 1 < β < 2. Thus the fractional derivative can represent the “spring-pot” element and also the “inerterpot” element proposed in the present article. The viscosity contribution coefficient, elasticity contribution coefficient, inertia contribution coefficient, amplitude-frequency relation, phase-frequency relation, and influence of the order are discussed in detail. The results show that fractional derivatives are applicable for characterizing the viscoelasticity and viscous inertia of materials.


2002 ◽  
Vol 13 (05) ◽  
pp. 260-269 ◽  
Author(s):  
Barbara Cone-Wesson ◽  
John Parker ◽  
Nina Swiderski ◽  
Field Rickards

Two studies were aimed at developing the auditory steady-state response (ASSR) for universal newborn hearing screening. First, neonates who had passed auditory brainstem response, transient evoked otoacoustic emission, and distortion-product otoacoustic emission tests were also tested with ASSRs using modulated tones that varied in frequency and level. Pass rates were highest (> 90%) for amplitude-modulated tones presented at levels ≥ 69 dB SPL. The effect of modulation frequency on ASSR for 500- and 2000-Hz tones was evaluated in full-term and premature infants in the second study. Full-term infants had higher pass rates for 2000-Hz tones amplitude modulated at 74 to 106 Hz compared with pass rates for a 500-Hz tone modulated at 58 to 90 Hz. Premature infants had lower pass rates than full-term infants for both carrier frequencies. Systematic investigation of ASSR threshold and the effect of modulation frequency in neonates is needed to adapt the technique for screening.


2021 ◽  
Vol 11 (4) ◽  
pp. 1717
Author(s):  
Gilberto Gonzalez Avalos ◽  
Noe Barrera Gallegos ◽  
Gerardo Ayala-Jaimes ◽  
Aaron Padilla Garcia

The direct determination of the steady state response for linear time invariant (LTI) systems modeled by multibond graphs is presented. Firstly, a multiport junction structure of a multibond graph in an integral causality assignment (MBGI) to get the state space of the system is introduced. By assigning a derivative causality to the multiport storage elements, the multibond graph in a derivative causality (MBGD) is proposed. Based on this MBGD, a theorem to obtain the steady state response is presented. Two case studies to get the steady state of the state variables are applied. Both cases are modeled by multibond graphs, and the symbolic determination of the steady state is obtained. The simulation results using the 20-SIM software are numerically verified.


Sign in / Sign up

Export Citation Format

Share Document