Heat Conduction Equation Finite Volume Method to Achieve on MATLAB

2012 ◽  
Vol 195-196 ◽  
pp. 712-717
Author(s):  
Qiong Xue ◽  
Xiao Feng Xiao ◽  
Niang Zhi Fan

Diffusion only, two dimensional heat conduction has been described on partial differential equation. Based on Finite Volume Method, Discretized algebraic Equation of partial differential equation have been deduced. different coefficients and source terms have been discussed under different boundary conditions, which include prescribed heat flux, prescribed temperature, convection and insulated. Transient heat conduction analysises of infinite plate with uniform thickness and two dimensional rectangle region have been realized by programming using MATLAB. It is useful to make the heat conduction equation more understandable by its solution with graphical expression, feasibility and stability of numerical method have been demonstrated by running result.

2012 ◽  
Vol 510 ◽  
pp. 205-210
Author(s):  
Xiao Feng Xiao ◽  
Qiong Xue

Diffusion only, two dimensional heat conduction has been described on partial differential equation. Based on Finite Volume Method, Discretized algebraic Equation of partial differential equation have been deduced. different coefficients and source terms have been discussed under different boundary conditions, which include prescribed heat flux, prescribed temperature, convection and insulated.. Transient heat conduction analysis of infinite plate with uniform thickness and two dimensional rectangle region are realized by programming using MATLAB. It is useful to make the heat conduction equation more understandable by its solution with graphical expression, feasibility and stability of numerical method have been demonstrated by running result.


1964 ◽  
Vol 60 (4) ◽  
pp. 897-907 ◽  
Author(s):  
M. Wadsworth ◽  
A. Wragg

AbstractThe replacement of the second space derivative by finite differences reduces the simplest form of heat conduction equation to a set of first-order ordinary differential equations. These equations can be solved analytically by utilizing the spectral resolution of the matrix formed by their coefficients. For explicit boundary conditions the solution provides a direct numerical method of solving the original partial differential equation and also gives, as limiting forms, analytical solutions which are equivalent to those obtainable by using the Laplace transform. For linear implicit boundary conditions the solution again provides a direct numerical method of solving the original partial differential equation. The procedure can also be used to give an iterative method of solving non-linear equations. Numerical examples of both the direct and iterative methods are given.


2013 ◽  
Vol 393 ◽  
pp. 305-310
Author(s):  
Abobaker Mohammed Alakashi ◽  
Hamidon Bin Salleh ◽  
Bambang Basuno

The continued research and development of high-order methods in Computational Fluid Dynamics (CFD) is primarily motivated by their potential to significantly reduce the computational cost and memory usage required to obtain a solution to a desired level of accuracy. The present work presents the developed computer code based on Finite Volume Methods (FVM) Cell-centred Finite Volume Method applied for the case of Quasi One dimensional Inviscid Compressible flow, namely the flow pass through a convergent divergent nozzle. In absence of the viscosity, the governing equation of fluid motion is well known as Euler equation. This equation can behave as Elliptic or as Hyperbolic partial differential equation depended on the local value of its flow Mach number. As result, along the flow domain, governed by two types of partial differential equation, in the region in which the local mach number is less than one, the governing equation is elliptic while the other part is hyperbolic due to the local Mach number is a higher than one. Such a mixed type of equation is difficult to be solved since the boundary between those two flow domains is not clear. However by treating as time dependent flow problems, in respect to time, the Euler equation becomes a hyperbolic partial differential equation over the whole flow domain. There are various Finite Volume Methods can be used for solving hyperbolic type of equation, such as Cell-centered scheme, Cusp Scheme Roe Upwind Scheme and TVD Scheme. The present work will concentrate on the case of one dimensional flow problem through five nozzle models. The results of implementation of Cell Centred Finite Volume method to these five flow nozzle problems are very encouraging. This approach able to capture the presence of shock wave with very good results.


Author(s):  
Roque Corral ◽  
Javier Crespo

A novel high-order finite volume method for the resolution of the Navier-Stokes equations is presented. The approach combines a third order finite volume method in an unstructured two-dimensional grid, with a spectral approximation in the third dimension. The method is suitable for the resolution of complex two-dimensional geometries that require the third dimension to capture three-dimensional non-linear unsteady effects, such as those for instance present in linear cascades with separated bubbles. Its main advantage is the reduction in the computational cost, for a given accuracy, with respect standard finite volume methods due to the inexpensive high-order discretization that may be obtained in the third direction using fast Fourier transforms. The method has been applied to the resolution of transitional bubbles in flat plates with adverse pressure gradients and realistic two-dimensional airfoils.


Sign in / Sign up

Export Citation Format

Share Document