The Lyapunov Exponent Variance of an Electronic Manufacturing Enterprise’s Daily Qualified Rate Time Series by Improved Small Data Sets Approach

2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.

2021 ◽  
Author(s):  
Yanyan Han ◽  
Jianpeng Ding ◽  
Lin Du ◽  
Youming Lei

Abstract In this work, we propose a method of control and anti-control of chaos based on the moving largest Lyapunov exponent using reinforcement learning. In this method, we design a reward function for the reinforcement learning according to the moving largest Lyapunov exponent, which is similar to the moving average but computes the corresponding largest Lyapunov exponent using a recently updated time series with a fixed, short length. We adopt the density peaks-based clustering algorithm to determine a linear region of the average divergence index so that we can obtain the largest Lyapunov exponent of the small data set by fitting the slope of the linear region. We show that the proposed method is fast and easy to implement through controlling and anti-controlling typical systems such as the Henon map and Lorenz system.


2013 ◽  
Vol 712-715 ◽  
pp. 2415-2418
Author(s):  
Juan Liu ◽  
Xue Wei Bai ◽  
Dao Cai Chi

A Local Piecewise-Linearity Prediction method is presented, Based on the advantages and limitations of local prediction of chaotic time series. Taking time series of rainfall as example for prediction the rainfall of one city in Liaoning province, which includes the application of the largest Lyapunov exponent, Local-region method and Local Piecewise-Linearity method. The method proposed is proved practical in comparison with the observed data.


1996 ◽  
Vol 06 (02) ◽  
pp. 377-381 ◽  
Author(s):  
ROBERT C. HILBORN ◽  
MINGZHOU DING

In this paper we consider the estimation of the correlation dimension from a scalar chaotic time series using delay coordinates. Past work has shown that there appears to be a reconstruction space for which the correlation integral has the longest scaling region. We give a firmer foundation to this idea by developing a theory that estimates the dimension of this “optimal” reconstruction space in terms of dynamical quantities such as the largest Lyapunov exponent.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


2007 ◽  
Vol 342-343 ◽  
pp. 581-584
Author(s):  
Byung Young Moon ◽  
Kwon Son ◽  
Jung Hong Park

Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understanding how variations in the gait pattern change over time. Healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Gait pattern is found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.


Sign in / Sign up

Export Citation Format

Share Document