The Analysis on Effect of the Terrain to the Culverts Stress by the Finite Element Method

2012 ◽  
Vol 212-213 ◽  
pp. 643-646
Author(s):  
Qing Jiang ◽  
Huan Jun Lai ◽  
Zhi Zhong Su

Highlight advantages of the finite element method is suitable for non-linear, non-homogeneous, complex boundary conditions. The paper adopts the finite element method to analysis culvert stress in Valley terrain. Gain that when the filling height H=40 meters, considering the valley topography calculated Ks=1.19, otherwise the Ks=1.435, the difference is about 17%. Therefore, the effects of the valley terrain to the high embankment culvert can not be ignored.

Author(s):  
Виктор Григорьевич Чеверев ◽  
Евгений Викторович Сафронов ◽  
Алексей Александрович Коротков ◽  
Александр Сергеевич Чернятин

Существуют два основных подхода решения задачи тепломассопереноса при численном моделировании промерзания грунтов: 1) решение методом конечных разностей с учетом граничных условий (границей, например, является фронт промерзания); 2) решение методом конечных элементов без учета границ модели. Оба подхода имеют существенные недостатки, что оставляет проблему решения задачи для численной модели промерзания грунтов острой и актуальной. В данной работе представлена физическая постановка промерзания, которая позволяет создать численную модель, базирующуюся на решении методом конечных элементов, но при этом отражающую ход фронта промерзания - то есть модель, в которой объединены оба подхода к решению задачи промерзания грунтов. Для подтверждения корректности модели был проделан ряд экспериментов по физическому моделированию промерзания модельного грунта и выполнен сравнительный анализ полученных экспериментальных данных и результатов расчетов на базе представленной численной модели с такими же граничными условиями, как в экспериментах. There are two basic approaches to solving the problem of heat and mass transfer in the numerical modeling of soil freezing: 1) using the finite difference method taking into account boundary conditions (the boundary, for example, is the freezing front); 2) using the finite element method without consideration of model boundaries. Both approaches have significant drawbacks, which leaves the issue of solving the problem for the numerical model of soil freezing acute and up-to-date. This article provides the physical setting of freezing that allows us to create a numerical model based on the solution by the finite element method, but at the same time reflecting the route of the freezing front, i.e. the model that combines both approaches to solving the problem of soil freezing. In order to confirm the correctness of the model, a number of experiments on physical modeling of model soil freezing have been performed, and a comparative analysis of the experimental data obtained and the calculation results based on the provided numerical model with the same boundary conditions as in the experiments was performed.


2015 ◽  
Vol 9 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Dmytro Fedorynenko ◽  
Sergiy Boyko ◽  
Serhii Sapon

Abstract The analysis of spatial functions of pressure considering the geometrical deviations and the elastic deformation of conjugate surace have been considered. The analysis of spatial functions of pressure is performed by the finite element method. The difference of the size of pressure in a tangential direction of a pocket of a support under various service conditions has been investigated. A recommendation for improving of operational characteristics in regulated hydrostatic radial bearing has been developed.


1999 ◽  
Vol 21 (2) ◽  
pp. 116-128
Author(s):  
Pham Thi Toan

In the present paper, the goffered multilayered composite cylindrical shells is directly calculated by finite element method. Numerical results on displacements, internal forces and moments are obtained for various kinds of external loads and different boundary conditions.


2009 ◽  
Vol 44 (6) ◽  
pp. 491-502 ◽  
Author(s):  
R Lostado ◽  
F J Martínez-De-Pisón ◽  
A Pernía ◽  
F Alba ◽  
J Blanco

This paper demonstrates that combining regression trees with the finite element method (FEM) may be a good strategy for modelling highly non-linear mechanical systems. Regression trees make it possible to model FEM-based non-linear maps for fields of stresses, velocities, temperatures, etc., more simply and effectively than other techniques more widely used at present, such as artificial neural networks (ANNs), support vector machines (SVMs), regression techniques, etc. These techniques, taken from Machine Learning, divide the instance space and generate trees formed by submodels, each adjusted to one of the data groups obtained from that division. This local adjustment allows good models to be developed when the data are very heterogeneous, the density is very irregular, and the number of examples is limited. As a practical example, the results obtained by applying these techniques to the analysis of a vehicle axle, which includes a preloaded bearing and a wheel, with multiple contacts between components, are shown. Using the data obtained with FEM simulations, a regression model is generated that makes it possible to predict the contact pressures at any point on the axle and for any condition of load on the wheel, preload on the bearing, or coefficient of friction. The final results are compared with other classical linear and non-linear model techniques.


2007 ◽  
Vol 46 (1-2) ◽  
pp. 95-108 ◽  
Author(s):  
J.J. del Coz Díaz ◽  
P.J. García Nieto ◽  
J.A. Vilán Vilán ◽  
A. Martín Rodríguez ◽  
J.R. Prado Tamargo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document