scholarly journals Validation of Acoustic Emission (AE) Crack Detection in Aerospace Grade Steel Using Digital Image Correlation

2010 ◽  
Vol 24-25 ◽  
pp. 221-226 ◽  
Author(s):  
Rhys Pullin ◽  
Mark J. Eaton ◽  
James J. Hensman ◽  
Karen M. Holford ◽  
Keith Worden ◽  
...  

Acoustic Emission (AE) is a passive form of non-destructive testing that relies on the detection and analysis of stress waves released during crack propagation. AE techniques are successfully employed number of industries there remains some scepticism in aerospace engineering. The reported investigation details a single four point bend test specimen undergoing fatigue loading. This test is part of a much larger programme designed to demonstrate a technology readiness level (TRL) of five of the use of AE to detect crack initiation and growth in landing gear structures. The completed test required that crack growth had to be monitored to allow a comparison with the detected and located AE signals. The method of crack monitoring had to be non-contact so as not to produce frictional sources of AE in the crack region, preventing the use of crack mouth opening displacement gauges. Furthermore adhesives on the specimen surface had to be avoided to eliminate the possibility that the detected AE was from adhesive cracking, thus the use of strain gauges or foil crack gauges was not possible. A method using Digital Image Correlation (DIC) to monitor crack growth was investigated. The test was stopped during fatigue loading at 1000 cycle intervals and a DIC image captured at peak load. The displacement due to crack growth was observed throughout the investigation and the results compared with the detected AE signals. Results showed a clear correlation between AE and crack growth and added further evidence of TRL5 for detecting fractures in landing gears using AE.

Author(s):  
Guoqing Jing ◽  
Du yunchang ◽  
Ruilin You ◽  
Mohammad Siahkouhi

Rubber concrete (RC) has been confirmed to be suitable for concrete sleeper production. This paper studies the cracking behaviour of conventional and rubber-reinforced concrete sleepers based on the results of an experimental program. The cracking behaviour in the pure bending zone was analysed up to a load of 140 kN. The crack mouth opening displacement (CMOD) was accordingly measured using a digital image correlation (DIC) method. The DIC results show that the rubber prestressed concrete sleeper (RPCS) has a resistance against crack initiation that is 20% greater than that of the conventional prestressed concrete sleeper (CPCS) under the same loading condition; however, due to the higher crack growth rate of the RPCS, the first crack detected by the operator forms at 60 kN, which corresponds to a strength approximately 9% lower compared with the 65 kN load at which the first crack is detected in the CPCS. Before the first crack (60 kN), the RPCS has a deflection 35% lower than that of the CPCS, but after cracking, at loads of 80 kN, 100 kN and 140 kN, the RPCS has a deflection 15%, 4% and 24% higher than that of the CPCS, respectively.


2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


Sign in / Sign up

Export Citation Format

Share Document