Study on Traffic Signal Control for Single Intersection via Fuzzy Logic

2012 ◽  
Vol 263-266 ◽  
pp. 624-628 ◽  
Author(s):  
Fu Yang Chen ◽  
Zhi Chao Chen ◽  
Feng Jiang

Considering the status of the modern road transport system, traffic signal control for isolated intersection is studied in this paper. A traffic signal control method for six-phase intersection is proposed in this paper, aiming at reducing the average waiting time of vehicles. A two-stage fuzzy controller for this method is designed in the paper. This method takes into account not only the traffic condition of the current prevailing phase and the next phase, but also the traffic demand of the vehicle flow that turn right, non-motorized traffic flow and pedestrian. Taking the average waiting time of vehicles as the evaluation index, we make simulations on the control method proposed above. The result for the simulation shows that the performance of this method is superior to that of the timing signal control method.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Duowei Li ◽  
Jianping Wu ◽  
Ming Xu ◽  
Ziheng Wang ◽  
Kezhen Hu

Controlling traffic signals to alleviate increasing traffic pressure is a concept that has received public attention for a long time. However, existing systems and methodologies for controlling traffic signals are insufficient for addressing the problem. To this end, we build a truly adaptive traffic signal control model in a traffic microsimulator, i.e., “Simulation of Urban Mobility” (SUMO), using the technology of modern deep reinforcement learning. The model is proposed based on a deep Q-network algorithm that precisely represents the elements associated with the problem: agents, environments, and actions. The real-time state of traffic, including the number of vehicles and the average speed, at one or more intersections is used as an input to the model. To reduce the average waiting time, the agents provide an optimal traffic signal phase and duration that should be implemented in both single-intersection cases and multi-intersection cases. The co-operation between agents enables the model to achieve an improvement in overall performance in a large road network. By testing with data sets pertaining to three different traffic conditions, we prove that the proposed model is better than other methods (e.g., Q-learning method, longest queue first method, and Webster fixed timing control method) for all cases. The proposed model reduces both the average waiting time and travel time, and it becomes more advantageous as the traffic environment becomes more complex.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4291 ◽  
Author(s):  
Qiang Wu ◽  
Jianqing Wu ◽  
Jun Shen ◽  
Binbin Yong ◽  
Qingguo Zhou

With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm, which is an innovative adaptive global traffic light control method based on multi-agent reinforcement learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC algorithm combines multi-agent auto communication protocol with MARL, allowing an agent to communicate the learned strategies with others for achieving global optimization in traffic signal control. In addition, we present a practicable edge computing architecture for industrial deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth. We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real traffic simulation environment.


ORiON ◽  
2019 ◽  
Vol 35 (1) ◽  
pp. 57-87
Author(s):  
SJ Movius ◽  
JH Van Vuuren

Fixed-time control and vehicle-actuated control are two distinct types of traffic signal control. The latter control method involves switching traffic signals based on detected traffic flows and thus offers more flexibility (appropriate for lighter traffic conditions) than the former, which relies solely on cyclic, predetermined signal phases that are better suited for heavier traffic conditions. The notion of self-organisation has relatively recently been proposed as an alternative approach towards improving traffic signal control, particularly under light traffic conditions, due to its flexible nature and its potential to result in emergent behaviour. The effectiveness of five existing self-organising traffic signal control strategies from the literature and a fixed-control strategy are compared in this paper within a newly designed agent-based, microscopic traffic simulation model. Various shortcomings of three of these algorithms are identified and algorithmic improvements are suggested to remedy these deficiencies. The relative performance improvements resulting from these algorithmic modifications are then quantified by their implementation in the aforementioned traffic simulation model. Finally, a new self-organising algorithm is proposed that is particularly effective under lighter traffic conditions.


2020 ◽  
Vol 6 ◽  
pp. e319
Author(s):  
Haitao Xu ◽  
Zuozhang Zhuo ◽  
Jing Chen ◽  
Xujian Fang

As an effective method to alleviate traffic congestion, traffic signal coordination control has been applied in many cities to manage queues and to regulate traffic flow under oversaturated traffic condition. However, the previous methods are usually based on two hypotheses. One is that traffic demand is constant. The other assumes that the velocity of vehicle is immutable when entering the downstream section. In the paper, we develop a novel traffic coordination control method to control the traffic flow along oversaturated two-way arterials without both these hypotheses. The method includes two modules: intersection coordination control and arterial coordination control. The green time plan for all intersections can be obtained by the module of intersection coordination control. The module of arterial coordination control can optimize offset plan for all intersections along oversaturated two-way arterials. The experiment results verify that the proposed method can effectively control the queue length under the oversaturated traffic state. In addition, the delay in this method can be decreased by 5.4% compared with the existing delay minimization method and 13.6% compared with the traffic coordination control method without offset optimization. Finally, the proposed method can balance the delay level of different links along oversaturated arterial, which can directly reflect the efficiency of the proposed method on the traffic coordination control under oversaturated traffic condition.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Ya Li ◽  
Renhuai Liu ◽  
Yuanyang Zou ◽  
Yingshuang Ma ◽  
Guoxin Wang

In this paper, we state a combining programming approach to optimize traffic signal control problem. The objective of the model is to minimize the total queue length with weight factors at the end of each phase. Then, modified Twin Gaussian Process (MTGP) is employed to predict the arrival rates for the traffic signal control problem. For achieving automatic control of the traffic signal, an intelligent control method of the traffic signal is proposed in view of the combining method, that is to say, the combining method of MTGP and LP, called MTGPLP, is embraced in the intelligent control system. Furthermore, some numerical experiments are proposed to test the validity of the model and the MTGPLP approach. In particular, the results of numerical experiments show that the model is effective with different arrival rates, departure rates, and weight factors and the combining method is successful.


Sign in / Sign up

Export Citation Format

Share Document