Numerical Investigation of Heat Transfer Enhancement with Mist Injection

2013 ◽  
Vol 281 ◽  
pp. 250-253
Author(s):  
Fifi N.M. Elwekeel ◽  
Antar M.M. Abdala ◽  
Qun Zheng

In the present work, computational simulations was made using ANSYS CFX to predict the improvements of internal heat transfer in rectangular ribbed channel using different coolants. Several coolants such as air, steam, air/mist and steam/mist were investigated. The shear stress transport (SST) turbulence model is selected by comparing the predictions of different turbulence models with experimental results. The results indicate that the heat transfer coefficients enhance in ribbed channel at injection small amount of mist. The heat transfer coefficients of air/mist, steam and steam/mist increase by 1.13, 1.57 and 2.07 times than that of air, respectively. Furthermore, comparing with droplets size, the proper size is from 6 to 10 µm. which had the best enhancement performance in ribbed duct.

Author(s):  
Nirm V. Nirmalan ◽  
Ronald S. Bunker ◽  
Carl R. Hedlung

A new method has been developed and demonstrated for the non-destructive, quantitative assessment of internal heat transfer coefficient distributions of cooled metallic turbine airfoils. The technique employs the acquisition of full-surface external surface temperature data in response to a thermal transient induced by internal heating/cooling, in conjunction with knowledge of the part wall thickness and geometry, material properties, and internal fluid temperatures. An imaging Infrared camera system is used to record the complete time history of the external surface temperature response during a transient initiated by the introduction of a convecting fluid through the cooling circuit of the part. The transient data obtained is combined with the cooling fluid network model to provide the boundary conditions for a finite element model representing the complete part geometry. A simple 1D lumped thermal capacitance model for each local wall position is used to provide a first estimate of the internal surface heat transfer coefficient distribution. A 3D inverse transient conduction model of the part is then executed with updated internal heat transfer coefficients until convergence is reached with the experimentally measured external wall temperatures as a function of time. This new technique makes possible the accurate quantification of full-surface internal heat transfer coefficient distributions for prototype and production metallic airfoils in a totally non-destructive and non-intrusive manner. The technique is equally applicable to other material types and other cooled/heated components.


Author(s):  
J. Kruekels ◽  
S. Naik ◽  
A. Lerch ◽  
A. Sedlov

The trailing edge sections of gas turbine vanes and blades are generally subjected to extremely high heat loads due to the combined effects of high external accelerating Mach numbers and gas temperatures. In order to maintain the metal temperatures of these trailing edges to a level, which fulfills the mechanical integrity of the parts, highly efficient cooling of the trailing edges is required without increasing the coolant consumption, as the latter has a detrimental effect on the overall gas turbine performance. In this paper the characteristics of the heat transfer and pressure drop of two novel integrated pin bank configurations were investigated. These include a pin bank with conical pins and a pin bank consisting of cylindrical pins and intersecting broken turbulators. As baseline case, a pin bank with cylindrical pins was studied as well. All investigations were done in a converging channel in order to be consistent with the real part. The heat transfer and pressure drop of all the pin banks were investigated initially with the use of numerical predictions and subsequently in a scaled experimental wind tunnel. The experimental study was conducted for a range of operational Reynolds numbers. The TLC (thermochromic liquid crystal) method was used to measure the detailed heat transfer coefficients in scaled Perspex models representing the various pin bank configurations. Pressure taps were located at several positions within the test sections. Both local and average heat transfer coefficients and pressure loss coefficients were determined. The measured and predicted results showed that the local internal heat transfer coefficient increases in the flow direction. This was due to the flow acceleration in the converging channel. Furthermore, both the broken ribs and the conical pin banks resulted in higher heat transfer coefficients compared with the baseline cylindrical pins. The conical pins produced the highest average internal heat transfer coefficients in contrast to the pins with the broken ribs, though this was also associated with a higher pressure drop.


2003 ◽  
Vol 125 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Nirm V. Nirmalan ◽  
Ronald S. Bunker ◽  
Carl R. Hedlund

A new method has been developed and demonstrated for the non-destructive, quantitative assessment of internal heat transfer coefficient distributions of cooled metallic turbine airfoils. The technique employs the acquisition of full-surface external surface temperature data in response to a thermal transient induced by internal heating/cooling, in conjunction with knowledge of the part wall thickness and geometry, material properties, and internal fluid temperatures. An imaging Infrared camera system is used to record the complete time history of the external surface temperature response during a transient initiated by the introduction of a convecting fluid through the cooling circuit of the part. The transient data obtained is combined with the cooling fluid network model to provide the boundary conditions for a finite element model representing the complete part geometry. A simple 1-D lumped thermal capacitance model for each local wall position is used to provide a first estimate of the internal surface heat transfer coefficient distribution. A 3-D inverse transient conduction model of the part is then executed with updated internal heat transfer coefficients until convergence is reached with the experimentally measured external wall temperatures as a function of time. This new technique makes possible the accurate quantification of full-surface internal heat transfer coefficient distributions for prototype and production metallic airfoils in a totally nondestructive and non-intrusive manner. The technique is equally applicable to other material types and other cooled/heated components.


Author(s):  
Fifi N. M. Elwekeel ◽  
Qun Zheng ◽  
Antar M. M. Abdala

Several of industrial applications such as electronic devices, heat exchangers, gas turbine blades, etc. need cooling processes. The internal cooling technique is proper to some applications. In the present work, computational simulations were made using ANSYS CFX to predict the improvements of internal heat transfer in rectangular ribbed channel using different coolants. Several coolants such as air, steam, air/mist and steam/mist were investigated. The shear stress transport model (SST) is selected by comparing the predictions of different turbulence models with experimental results. The results indicate that the heat transfer coefficients are enhanced in ribbed channel at injection small amount of mist. The heat transfer coefficients of air/mist, steam and steam/mist increase by 12.5%, 49.5% and 107% than that of air, respectively. Furthermore, comparing with air, the air/mist heat transfer coefficient enhances by about 1.05 to 1.14 times when mist mass fraction increases from 2% to 8%, respectively. For steam/mist heat transfer coefficient increases by about 1.12 to 1.27 times higher than that of steam over the consider range of mist mass fraction.


Author(s):  
Fifi N. M. Elwekeel ◽  
Qun Zheng ◽  
Antar M. M. Abdala

This study investigated heat transfer characteristics on various shaped ribs on the lower channel wall using steam and steam/mist as cooling fluid. The lower wall is subjected to a uniform heat flux condition while others walls are insulated. Calculations are carried out for ribs with square ribs (case A), triangular ribs (case B), trapezoidal ribs (case C) and (case D) cross sections over a range of Reynolds numbers (14000–35000), constant mist mass fraction (6%) and fixed rib height and pitch. To investigate turbulence model effects, computations based on a finite volume method, are carried out by utilizing three turbulence models: the standard k-ω, Omega Reynolds Stress (ωRS) and Shear Stress Transport (SST) turbulence models. The predicted results from using several turbulence models reveal that the SST turbulence model provide better agreement with available measurements than others. It is found that the heat transfer coefficients are enhanced in ribbed channels with injection of a small amount of mist. The steam/mist provides the higher heat transfer enhancement over steam when trapezoidal shaped ribs (38°, case C).


Sign in / Sign up

Export Citation Format

Share Document