Lifecycle-Based Swarm Optimization for Constrained Problem of Engineering

2013 ◽  
Vol 281 ◽  
pp. 710-714 ◽  
Author(s):  
Zhuang Wei Yin ◽  
Hai Shen ◽  
Yu Fu Deng ◽  
Mo Zhang

There are many constrained optimization problems in engineering. Bio-inspired optimization algorithms have been widely used to solve various engineering problems. This paper presents a novel optimization algorithm called Lifecycle-based Swarm Optimization, inspired by biology life cycle. LSO algorithm imitates biologic life cycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on a Vehicle Routing Problem with Time Windows for demonstration the effectiveness and stability. The results demonstrate remarkable performance of the LSO algorithm on chosen case when compared to two successful optimization techniques.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hai Shen ◽  
Yunlong Zhu ◽  
Xiaodan Liang

Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO). Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.


2018 ◽  
Vol 7 (2.32) ◽  
pp. 80 ◽  
Author(s):  
Avirup Guha Neogi ◽  
Singamreddy Mounika ◽  
Salagrama Kalyani ◽  
S A. Yogananda Sai

Ant Colony Optimization (ACO) is a nature-inspired swarm intelligence technique and a metaheuristic approach which is inspired by the foraging behavior of the real ants, where ants release pheromones to find the best and shortest route from their nest to the food source. ACO is being applied to various optimization problems till date and has been giving good quality results in the field. One such popular problem is known as Vehicle Routing Problem(VRP). Among many variants of VRP, this paper presents a comprehensive survey on VRP with Time Window constraints(VRPTW). The survey is presented in a chronological order discussing which of the variants of ACO is used in each paper followed by the advantages and limitations of the same.  


2013 ◽  
Vol 284-287 ◽  
pp. 3149-3153
Author(s):  
Chun Ta Lin

In this research, we propose a Foraging_PSO algorithm, relative to the real competitive environment, to apply particle swarm optimization (PSO) algorithm in dynamic foraging game to solve the vehicle routing problem with time windows (VRPTW). Meanwhile, under the hypothesis of group decision making in a foraging swarm and the hypothesis of each forager also is a predator of the other foragers, through decision selection in this foraging game, an analytical decision process can be obtained to support decision making.


Author(s):  
Kaixian Gao ◽  
Guohua Yang ◽  
Xiaobo Sun

With the rapid development of the logistics industry, the demand of customer become higher and higher. The timeliness of distribution becomes one of the important factors that directly affect the profit and customer satisfaction of the enterprise. If the distribution route is planned rationally, the cost can be greatly reduced and the customer satisfaction can be improved. Aiming at the routing problem of A company’s vehicle distribution link, we establish mathematical models based on theory and practice. According to the characteristics of the model, genetic algorithm is selected as the algorithm of path optimization. At the same time, we simulate the actual situation of a company, and use genetic algorithm to plan the calculus. By contrast, the genetic algorithm suitable for solving complex optimization problems, the practicability of genetic algorithm in this design is highlighted. It solves the problem of unreasonable transportation of A company, so as to get faster efficiency and lower cost.


2021 ◽  
Vol 21 (1) ◽  
pp. 62-72
Author(s):  
R. B. Madhumala ◽  
Harshvardhan Tiwari ◽  
Verma C. Devaraj

Abstract Efficient resource allocation through Virtual machine placement in a cloud datacenter is an ever-growing demand. Different Virtual Machine optimization techniques are constructed for different optimization problems. Particle Swam Optimization (PSO) Algorithm is one of the optimization techniques to solve the multidimensional virtual machine placement problem. In the algorithm being proposed we use the combination of Modified First Fit Decreasing Algorithm (MFFD) with Particle Swarm Optimization Algorithm, used to solve the best Virtual Machine packing in active Physical Machines to reduce energy consumption; we first screen all Physical Machines for possible accommodation in each Physical Machine and then the Modified Particle Swam Optimization (MPSO) Algorithm is used to get the best fit solution.. In our paper, we discuss how to improve the efficiency of Particle Swarm Intelligence by adapting the efficient mechanism being proposed. The obtained result shows that the proposed algorithm provides an optimized solution compared to the existing algorithms.


2020 ◽  
Author(s):  
Chnoor M. Rahman ◽  
Tarik A. Rashid

<p></p><p></p><p>Dragonfly algorithm developed in 2016. It is one of the algorithms used by the researchers to optimize an extensive series of uses and applications in various areas. At times, it offers superior performance compared to the most well-known optimization techniques. However, this algorithm faces several difficulties when it is utilized to enhance complex optimization problems. This work addressed the robustness of the method to solve real-world optimization issues, and its deficiency to improve complex optimization problems. This review paper shows a comprehensive investigation of the dragonfly algorithm in the engineering area. First, an overview of the algorithm is discussed. Besides, we also examine the modifications of the algorithm. The merged forms of this algorithm with different techniques and the modifications that have been done to make the algorithm perform better are addressed. Additionally, a survey on applications in the engineering area that used the dragonfly algorithm is offered. A comparison is made between the algorithm and other metaheuristic techniques to show its ability to enhance various problems. The outcomes of the algorithm from the works that utilized the dragonfly algorithm previously and the outcomes of the benchmark test functions proved that in comparison with some techniques, the dragonfly algorithm owns an excellent performance, especially for small to intermediate applications. Moreover, the congestion facts of the technique and some future works are presented. The authors conducted this research to help other researchers who want to study the algorithm and utilize it to optimize engineering problems.</p><br><p></p><p></p>


Sign in / Sign up

Export Citation Format

Share Document