CFD Analysis of Turbulent Flow in Typical Rod Bundles in Rolling Motion

2010 ◽  
Vol 29-32 ◽  
pp. 716-724 ◽  
Author(s):  
B.H. Yan ◽  
Han Yang Gu ◽  
Y.H. Yang ◽  
L. Yu

The influence mechanism of rolling motion on the flowing and heat transfer characteristics of turbulent flow in typical four rod bundles is investigated with FLUENT code. The flowing and heat transfer characteristics of turbulent flow in rod bundles can be affected by rolling motion. But the flowing similarity of turbulent flow in adiabatic and non-adiabatic can not be affected. If the rolling amplitude is big or if the rolling period is small, the radial additional force can make the parameter profiles and the turbulent flowing and heat transfer change greatly. And the frictional resistance coefficient and heat transfer coefficient can not be solved by the correlations in steady state. In rolling motion, as the pitch to diameter ratio decrease, especially if it is less than 1.1, the flowing and heat transfer of turbulent flow in rolling motion change significantly.

Author(s):  
Binghuo Yan ◽  
Hanyang Gu ◽  
Yanhua Yang ◽  
Yanping Huang

The flowing and heat transfer characteristics of turbulent flow in tubes in rolling motion are investigated theoretically. The flowing and heat transfer models of turbulent flow in rolling motion are established. The correlations of frictional resistance coefficient and Nusselt number are derived. The results are also validated with experiments. The effects of several parameters on Nusselt number are investigated. The oscillating amplitude of Nusselt number is in direct ratio with Prandtl number and rolling frequency approximately. The more the flowing velocity is, the less the effect of rolling motion on the flow is. The variation of initial phase difference between Nusselt number and rolling motion with rolling frequency is very limited.


2007 ◽  
Vol 11 (4) ◽  
pp. 171-178
Author(s):  
Khalid Alammar

Using the standard k-e turbulence model, an incompressible, axisymmetric turbulent flow with a sudden expansion was simulated. Effect of Prandtl number on heat transfer characteristics downstream of the expansion was investigated. The simulation revealed circulation downstream of the expansion. A secondary circulation (corner eddy) was also predicted. Reattachment was predicted at approximately 10 step heights. Corresponding to Prandtl number of 7.0, a peak Nusselt number 13 times the fully-developed value was predicted. The ratio of peak to fully-developed Nusselt number was shown to decrease with decreasing Prandtl number. Location of maximum Nusselt number was insensitive to Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document